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1. INTRODUCTION AND PRELIMINARIES 

 

The set of positive real numbers is not complete with respect to usual metric. To overcome this difficulty, in 2008, 

Bashirov et al. [5] introduced the concept of multiplicative metric spaces as follows:                

                                                                                                                                             

Definition1.1. ([5]) Let X be a non-empty set. A multiplicative metric is a mapping 

 d: X×X → ℝ+ satisfying the following conditions: 

  (i) d(x, y) ≥ 1 for all x, y ∈ X and d(x, y) = 1 if and only if x=y; 

  (ii) d(x, y) = d(y, x) for all x, y ∈ X;  

  (iii) d(x, y) ≤ d(x, z). d(z, y) for all x, y, z ∈ X (multiplicative triangle inequality). 

Then mapping d together with X i.e., (X, d) is known as multiplicative metric spaces. 

 

Example1.2.([5]) Let Rn
+ be the collection of all n-tuples of positive real numbers.  

Let 𝑑∗: ℝn
+ × ℝn

+ → ℝ be defined as follows: 

      𝑑∗ (x, y) =   
𝑥1

𝑦1
 
∗

 .  
𝑥2

𝑦2
 
∗

 …  
𝑥𝑛

𝑦𝑛
 
∗

 , 

where  x=(𝑥1,. . . ,𝑥𝑛 ) , y=(𝑦1, . . . ,𝑦𝑛 ) ∈ ℝn
+ and  .   : ℝ+ → ℝ+ is defined by 

     𝑎  ∗  =  
𝑎     𝑖𝑓 𝑎 ≥ 1;
1

𝑎
      𝑖𝑓 𝑎 < 1.

  

Then (X, d) is a multiplicative metric space. 

 

Example1.3. ([10]) Let d: ℝ × ℝ→ [1, ∞) be defined by  

      d(x, y) = 𝑎 𝑥−𝑦  ,where x, y ∈ ℝ and a > 1. Then d(x, y) is multiplicative metric and (X, d) is a multiplicative metric 
space. We may call it usual multiplicative metric spaces. 

In 2015, M. Abbas et.al. introduced the notion of multiplicative absolute value function as follow: 

 

Definition 1.4.([2]) A multiplicative absolute value function |⋅|: ℝ →ℝ+ is defined as 

|𝑥| = 

 
 
 

 
 

𝑥      𝑖𝑓                  𝑥 ≥1 
1

𝑥
      𝑖𝑓       𝑥 ∈(0,1)     

1         𝑖𝑓    𝑥 = 0 

−
1

𝑥
       𝑖𝑓    𝑥 ∈(−1,0)      

−𝑥                   𝑖𝑓    𝑥 ≤−1

 .  

 

Proposition 1.5.([2]) For arbitrary 𝑥, 𝑦 ∈ ℝ+,the multiplicative absolute value function 

|⋅| : ℝ+ →ℝ+satisfies the following: 

(1)  |𝑥| ≥ 1. 

(2) 𝑥 ≤ |𝑥|. 
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(3) 1/|𝑥| ≤ 𝑥 if 𝑥 > 0 and 𝑥 ≤ 1/|𝑥| if 𝑥 ≤ 0. 

(4) |𝑥⋅𝑦| ≤ |𝑥||𝑦|. 

One can refer to ([10]) for detailed multiplicative metric topology. 

 

Definition1.6.([7]) Let (X, d) be a multiplicative metric space. A sequence {𝑥𝑛} in X said to be a 

(i) multiplicative convergent sequence to x, if for every multiplicative open ball 

 𝐵𝜖 (x) = { y | d(x, y) < ϵ} , ϵ > 1, there exists a natural number N such that  𝑥𝑛  ∈ 𝐵𝜖(x) for all  

n ≥ N, i. e, d(𝑥𝑛 , 𝑥) → 1 as n → ∞. 

(ii) multiplicative Cauchy sequence if for all ϵ > 1, there exists N ∈ ℕ such that d(𝑥𝑛 , 𝑥𝑚 ) < ϵ for all m, n > N i. e , 

d(𝑥𝑛 , 𝑥𝑚 ) → 1 as n → ∞. 

A multiplicative metric space is called complete if every multiplicative Cauchy sequence in X is multiplicative 

convergent to  x ∈ X. 

In 2012, Ozavsar gave the concept of multiplicative contraction mapping and proved some fixed point theorem for 

these maps in complete multiplicative metric spaces.  

 

Definition1.7.([7]) Let (X, d) be a multiplicative metric space. The map f : X → X is called a multiplicative contraction 

if there exists a real constant λ ∈ [0, 1) such that                                     

d(f(𝑥1), f(𝑥2)) ≤ (d(𝑥1 , 𝑥2))λ for all x, y ∈ X. 
Consider the k-th order nonlinear difference equation 

 𝑥𝑛+𝑘= f (𝑥𝑛 , ..., 𝑥𝑛+𝑘−1), n ∈ℕ                                                                                                (1.8) 

with the initial values 𝑥0, 𝑥1, ..., 𝑥𝑘  ∈ X, where (X, d) is a metric space, k ∈ N, k ≥ 1 

and f : 𝑋𝑘  → X. Equation (1.1) can be studied for fixed point theory in view of the fact that 

 𝑥∗∈ X is a solution of (1.1) if and only if 𝑥∗ is a fixed point of f , that is, 𝑥∗= f (𝑥∗, ..., 𝑥∗). 

 

Definition 1.9. Let (X, d) be a metric space, 𝑘 a positive integer, and 

 𝑓: 𝑋𝑘→𝑋 and 𝑔:𝑋 → 𝑋 mappings. 

 (b) An element 𝑥 ∈ 𝑋 is said to be a fixed point of 𝑓 if x = (𝑥,...,). 

 (c) If 𝑥 = 𝑔𝑥 = f(𝑥,...,𝑥),then 𝑥 is called a common fixed point of 𝑓and𝑔. 

(d) Mappings 𝑓and 𝑔are said to be commuting if ((𝑥,...,)) = 𝑓(𝑔𝑥,...,𝑔𝑥) , for all 𝑥 ∈ 𝑋. 

(f) Mappings f and g are said to be weakly commuting if  

     d(f(g(x, x, ...x)),g(fx, fx, ...fx)) ≤ d(f(x, x, ...x),g(x, x, ...x)) for all x ∈ X. 

(b) An element 𝑥 ∈ 𝑋 is said to be a coincidence point of 𝑓and 𝑔 if 𝑔𝑥 = (𝑥,...,). 

(e) Mappings𝑓 and 𝑔are said to be k-compatible (coincidentally commuting)   

if  g (f(p, p, . . . , p)) = f(gp, gp, . . . , gp),  whenever  p ∈ X is such that gp = f (p, p, . . . , p). 

 
Remark 1.10. The above definition are used in similar mode multiplicative metric spaces. 

 

Remark 1.11. For k=1, the above definitions reduce to the usual definition of commuting and weakly compatible 

mappings in a multiplicative metric space. 

In 1965, S.B. Presic in [8] gives the most important results on this direction by generalizing the Banach contraction 

mapping principle as follows: 

 

Theorem 1.12. ([8]). Let (X, d) be a complete metric space, k a positive integer and 

T : 𝑋𝑘→ X a mapping satisfying the following contractive type condition 

(1.2.1)  d(T (𝑥1, 𝑥2, ..., 𝑥𝑘), T (𝑥2, 𝑥3, ..., 𝑥𝑘+1)) ≤ 𝑞1d(𝑥1, 𝑥2) + 𝑞2d(𝑥2, 𝑥3) + ... + 𝑞𝑘d(𝑥𝑘 , 𝑥𝑘+1) for every 𝑥1, 𝑥2, 𝑥3, 

..., 𝑥𝑘 , 𝑥𝑘+1in X, where 𝑞1, 𝑞2, ..., 𝑞𝑘 are non -negative constants such that 𝑞1+ 𝑞2+ ...+ 𝑞𝑘  < 1. 

Then there exists a unique point x in X such that T (x, x, ..., x) = x. 

Moreover, if 𝑥1, 𝑥2, ..., 𝑥𝑘  are arbitrary points in X and for n ∈ N , 𝑥𝑛+𝑘  = T (𝑥𝑛 , 𝑥𝑛+1, ..., 𝑥𝑛+𝑘−1) then the sequence 

{𝑥𝑛} is convergent and lim𝑥𝑛  =T (lim𝑥𝑛 , lim𝑥𝑛 , ..., lim𝑥𝑛 ). 

 

2. MAIN RESULTS 

 

In 1997, Alber and Guerre-Delabriere [4] introduced the notion of weakly contractive mappings in Hilbert spaces and 

proved that any weakly contractive mapping defined on complete Hilbert spaces has a unique fixed point. Rhoads [9] 

extended their work in Banach spaces. 

 

Definition 2.5.[9] A mapping f : X → X is said to be a weakly contractive if 

                         d( f x, f y)≤ d(x, y) − φ(d(x, y)); for all x, y ∈ X; 
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where  φ : [0, 1) → [0, 1) is a continuous and non-decreasing function such that it is positive in (0,∞),φ (0) = 0 and 

lim𝑡→∞ φ (t)  = 0.  
In 2015, M. Abbas,  D. Ili´c , T. Nazir[3] ,proved following theorem in metric spaces as follows: 

 

Theorem2.6.[3] Let (X, d) be a complete metric space, k a positive integer and f : 𝑋𝑘→ X be a given mapping. 
Suppose that there exists φ: [0, ∞) → [0, ∞) a lower semi-continuous function with   

φ (t) = 0 if and only if t = 0 satisfying 

(2.7)   T(𝑋𝑘) ⊆ f (X), 
(2.8)   f (X) is complete and  

(2.9)   (f, T) is a weakly k-compatible pair. 

(2.10) d( f (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘  ), f (𝑥2, 𝑥3, . . . , 𝑥𝑘+1))  

                                                                ≤ max{d(𝑥𝑖 , 𝑥𝑖+1) : 1 ≤ i ≤ k}− φ (max{d(𝑥𝑖 , 𝑥𝑖+1) , 

1 ≤ i ≤ k}),                                                  

            for all (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘+1) ∈ 𝑋𝑘+1.  

(2.11)    d(T (u, u, . . . , u), T (v, v, . . . , v)) < d(f u, f v), for all distinct u, v ∈ X.  

Then, for any arbitrary points  𝑥2, 𝑥3, . . . , 𝑥𝑘  ∈ X, the sequence {𝑥𝑛} defined by (2.7) converges to 

 u ∈ X and u is a fixed point of f , that is, u = f (u,…,u).  

Moreover, if d (f (x,…,x), f ( y,…,y)) ≤ d(x, y) − φ (d(x; y));                                                    

holds  for all x, y ∈ X with x ≠ y, then u is the unique fixed point of f . 

Now we prove above theorem in setting of multiplicative metric space as follows: 

 

Theorem2.12. Let (X, d) be a complete multiplicative metric space, k a positive integer and  

T : 𝑋𝑘→ X be a given mapping. Suppose that there exists φ: [1, ∞) → [1,∞) a lower semi-continuous function with  φ 
(t) = 1 if and only if t = 1 satisfying  

(2.13)   T(𝑋𝑘) ⊆ f (X), 
(2.14)   f (X) is complete and  

(2.15)   (f, T) is a weakly k-compatible pair. 

(2.16)  d(T(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘  ), T(𝑥2, 𝑥3, . . . , 𝑥𝑘+1)) 

                                                                       ≤ 
max {d(𝑓𝑥𝑖 ,𝑓𝑥𝑖+1)∶ 1 ≤ i ≤ k}λ

φ(max {d(𝑓𝑥 𝑖 ,𝑓𝑥𝑖+1)∶ 1 ≤ i ≤ k}}λ
                                                                             

for all 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘+1 ∈ 𝑋𝑘+1. Then, for any arbitrary points  𝑥2, 𝑥3, . . . , 𝑥𝑘  ∈ X, the sequence {𝑥𝑛} defined by 

(2.13) converges to u ∈ X and u is a fixed point of T , that is, u = f (u,…,u).  

(2.17) Moreover, if d (T (x,…,x), T ( y,…,y)) ≤ d(fx, fy) − φ (d(fx,fy));                                                

holds for all x, y ∈ X with x ≠ y, then u is the unique fixed point of f . 

 

Proof. Let 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘  be arbitrary elements in X. By (2.13), we define a sequence  

{𝑦𝑛}in f(X) as follows : 𝑦𝑛+𝑘= f(𝑥𝑛+𝑘 )=T(𝑥𝑛 , 𝑥𝑛+1, ... 𝑥𝑛+𝑘−1), for n=1,2, ..... 

For simplicity set α𝑛  = d(𝑦𝑛 , 𝑦𝑛+1). We shall prove by induction that for each n ∈ N: 

α𝑛  ≤ Kθ𝑛
   (where θ = (𝜆)

1
𝑘  <1 , K = max{(α1)

1
θ , (α2)

1
θ2 

, . . . , (α𝑘 )
1

θ𝑘 
}                        (2.18) 

 

According to the definition of K we see that (2.18) is true for n = 1, . . . , k.  

Now let the following k inequalities: α𝑛  ≤ Kθ𝑛
   , α𝑛+1 ≤ Kθ𝑛 +1

   , . . . , α𝑛+𝑘−1 ≤ Kθ𝑛 +𝑘−1
 be the induction hypotheses.  

Then we have: 

 α𝑛+𝑘  =  d(y𝑛+𝑘 , y𝑛+𝑘+1) = d(T (𝑥𝑛 , 𝑥𝑛+1, . . . , 𝑥𝑛+𝑘−1), T (x𝑛+1, x𝑛+2, . . . , x𝑛+𝑘 )) 

≤ 
max {d(f𝑥𝑛 ,f𝑥𝑛 +1),d(f 𝑥𝑛 +1 ,f 𝑥𝑛 +2),...d(f 𝑥𝑛 +𝑘−1 ,f 𝑥𝑛 +𝑘)}λ

φ(max {d(f𝑥𝑛 ,f𝑥𝑛 +1),d(f 𝑥𝑛 +1 ,f 𝑥𝑛 +2),...d(f 𝑥𝑛 +𝑘−1 ,f 𝑥𝑛 +𝑘)}λ
 

≤ 
[max {α𝑛 ,α𝑛 +1 ,...α𝑛 +𝑘−1}]λ 

φ ([max {α𝑛 ,α𝑛 +1 ,...α𝑛 +𝑘−1}]λ  

≤ 
[max {Kθ𝑛

,Kθ𝑛 +1
,...Kθ𝑛 +𝑘−1

}]λ 

φ ([max {Kθ𝑛
,Kθ𝑛 +1

,...Kθ𝑛 +𝑘−1
}]λ 

 

 ≤ [max{Kθ𝑛
, Kθ𝑛 +1

, . . . Kθ𝑛 +𝑘−1
}]λ  

 ≤ [Kθ𝑛
]λ {as θ < 1} 

=Kθ𝑛 +𝑘
{as λ = θ

𝑘
} 

Thus inductive proof of (2.18) is complete.  

Now, for n, p ∈ N, we have 

d(𝑦𝑛 , 𝑦𝑛 +𝑝) ≤ d(𝑦𝑛 , 𝑦𝑛+1).d(𝑦𝑛+1, 𝑦𝑛+2).....d(𝑦𝑛+𝑝−1, 𝑦𝑛+𝑝) 

                 ≤ Kθ𝑛
. Kθ𝑛 +1

..... Kθ𝑛 +𝑝−1
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                ≤ Kθ𝑛 (1+θ+θ2+⋯ )  

                ≤ K
θ𝑛

1−θ
 

 . 

Letting → ∞ . Hence sequence {𝑦𝑛} is a Cauchy sequence in f(X). As f(X) is complete, there exists z ∈ f(X) such that 

lim𝑛→∞ 𝑦𝑛= z.  

Hence there exists a point p ∈ X such that z = f p. 

Now consider 

d(f x𝑛+𝑘 , T (p, p, . . . , p)) = d(T (p, p, . . . , p), T (𝑥𝑛 , 𝑥𝑛+1, . . . , x𝑛+𝑘−1)) 

≤ d(T (p, p, . . . , p), T (p, p, . . . , p, 𝑥𝑛 )).d(T (p, p, . . . , p, 𝑥𝑛 ), T (p, p, . . . , p, 𝑥𝑛 , 𝑥𝑛+1)) 

. d(T (p, p, . . . , p, 𝑥𝑛 , 𝑥𝑛+1), T (p, p, . . . , p, 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+2)).d(T (p, p, . . . , p, 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+2), T (p, p, . . . , p, 𝑥𝑛 , 

𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+3)). . . . . d(T (p, 𝑥𝑛 , 𝑥𝑛+1, . . . , 𝑥𝑛+𝑘−2), T (𝑥𝑛 , 𝑥𝑛+1, . . . , 𝑥𝑛+𝑘−1)). 

≤ 
[d(f p,f𝑥𝑛 ) ]λ

φ( d f p,f𝑥𝑛   λ)
. 

[max {d fp ,f𝑥𝑛  ,d f𝑥𝑛 ,f 𝑥𝑛 +1 } ]λ

φ([max {d fp ,f𝑥𝑛  ,d f𝑥𝑛 ,f  𝑥𝑛 +1 } ]λ)
  

[max {d(f p,f 𝑥𝑛 ),d(f 𝑥𝑛 ,f 𝑥𝑛 +1),d(f 𝑥𝑛 +1 ,f 𝑥𝑛 +2)}]λ

φ([max {d(f p,f 𝑥𝑛 ),d(f 𝑥𝑛 ,f 𝑥𝑛 +1),d(f 𝑥𝑛 +1 ,f 𝑥𝑛 +2)}]λ)
.

[max {d(f p,f 𝑥𝑛 ),d(f 𝑥𝑛 ,f 𝑥𝑛 +1),d(f 𝑥𝑛 +1 ,f 𝑥𝑛 +2)}]λ

φ  max  d f p,f 𝑥𝑛  ,d f 𝑥𝑛 ,f 𝑥𝑛 +1 ,d f 𝑥𝑛 +1 ,f 𝑥𝑛 +2   λ 
 . . . . 

[max {d(f p,f𝑥𝑛 ),d(f𝑥𝑛 ,f 𝑥𝑛 +1),d(f 𝑥𝑛 +1 ,f 𝑥𝑛 +2),d(f 𝑥𝑛 +2 ,f 𝑥𝑛 +3)}]λ

φ [max {d(f p,f𝑥𝑛 ),d(f𝑥𝑛 ,f 𝑥𝑛 +1),d(f 𝑥𝑛 +1 ,f 𝑥𝑛 +2),d(f 𝑥𝑛 +2 ,f 𝑥𝑛 +3)}]λ 
. 

 [max {d(f p ,f 𝑥𝑛 ),d(f𝑥𝑛 ,f  𝑥𝑛 +1),...,d(f 𝑥𝑛 +𝑘−2 ,f 𝑥𝑛 +𝑘−1)}]λ

φ  [max {d(f p,f 𝑥𝑛 ),d(f𝑥𝑛 ,f 𝑥𝑛 +1),...,d(f 𝑥𝑛 +𝑘−2 ,f 𝑥𝑛 +𝑘−1)}]λ 
. 

Letting n → ∞, and using the properties of φ we get 

d(fp, T (p, p, . . . , p)) ≤ 1, so that f p = T (p, p, . . . , p).  

Since (f, T) is weakly k-compatible we have 

f (T (p, p, . . . , p)) = T (f p, f p, . . . , f p)and so𝑓2p = f (f p) = f (T (p, p, . . . , p)) = T(f p, f p, . . . , f p). 

Thus  f z = T (z, z, . . . , z).  
We now have 

d(𝑓2p, f p) = d(T (f p, f p, . . . , f p), T (p, p, . . . , p)) ≤ 
d(𝑓2p,f p)]λ

φ(d(𝑓2 p,f p)λ)
 < d(𝑓2p, f p), which is a contradiction.  

Therefore, 𝑓2p = f p so that f z = z.  We now have z = fz = T (z, z, . . . , z). 

Uniqueness can be easily found from (2.17). 
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