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1. INTRODUCTION AND PRELIMINARIES 

 

It is well know that the set of positive real numbers ℝ+ is not complete according to the usual metric. To overcome this 

problem, in 2008, Bashirov et al. [2] introduced the concept of multiplicative metric spaces as follows:   

 

Definition1.1. ([2]) Let X be a non-empty set. A multiplicative metric is a mapping d: X×X → ℝ+ satisfying the 

following conditions: 

  (i) d(x, y) ≥ 1 for all x, y ∈ X and d(x, y) = 1 if and only if x=y; 

  (ii) d(x, y) = d(y, x) for all x, y ∈ X; 

  (iii) d(x, y) ≤ d(x, z). d(z, y) for all x, y, z ∈ X (multiplicative triangle inequality). 

 

Then mapping d together with X i.e., (X, d) is a multiplicative metric space. 

 

Example1.2.([8]) Let Rn
+ be the collection of all n-tuples of positive real numbers.  

Let  d∗: ℝn
+ × ℝn

+ → ℝ be defind as follows: 

      d∗ (x, y) =   
x1

y1
 
∗

 .  
x2

y2
 
∗

 …  
xn

yn
 
∗

 , 

 

where  x=(x1,. . . ,xn) , y=(y1, . . . ,yn) ∈ ℝn
+ and   .   : ℝ+ → ℝ+ is defined by 

     a  ∗ =   
a     if a ≥ 1;
1

a
      if a < 1.

  

Then it is obvious that all conditions of multiplicative metric are satisfied. 

 

Example1.3. ([10]) Let d: ℝ × ℝ→ [1, ∞) be defined as  

      d(x, y) = a x−y  ,where x, y ∈ ℝ and a > 1. Then d(x, y) is a multiplicative metric and (X, d) is called a 
multiplicative metric space. We call it usual multiplicative metric spaces. 

 

Example1.4.([10]) Let (X, d) be a metric space .Define a  mapping da  on X by da(x, y) = ad(x,y) where a > 1 is a real 

number and  da(x, y) = ad(x,y) =  
1  if  x = y
a  if  x ≠ y.

    

The metric da(x, y) is called discrete multiplicative metric and X together with metric da i.e., (X, da ) is known as a 

discrete multiplicative metric space. 

 

Example 1.5.([1]) Let 𝑋 = C∗[𝑎, 𝑏] be the collection of all real-valued multiplicative continuous functions over[𝑎, 𝑏] ⊆ 

R+. Then (𝑋, 𝑑) is a multiplicative metric space with metric 𝑑 defined by 

d(𝑓,𝑔) = sup
x∈[a,b]

 
f(x)

g(x)
  for f ,g ∈ 𝑋. 

 

Remark1.6. We note that the example 1.1 is valid for positive real numbers and example 1.2 is valid for all real 

numbers. 
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Remark 1.7.([10]) Neither every metric is multiplicative metric nor every multiplicative metric is metric. The mapping 

d∗ defined above is multiplicative metric but not metric as it doesn’t satisfy triangular inequality. Consider d∗(
1

3
, 

1

2
) + 

d∗(
1

2
, 3) = 

3

2
 + 6 = 7.5 < 9 = d∗(

1

3
, 3).  

On the other, hand the usual metric on R is not multiplicative metric as it doesn’t satisfy multiplicative triangular 

inequality, since d(2, 3) · d(3, 6) = 3 < 4 = d(2, 6). 

One can refer to ([8]) for detailed multiplicative metric topology. 
 

Definition1.8.([8]) Let (X, d) be a multiplicative metric space. A sequence {xn} in X said to be a 

(i) multiplicative convergent sequence to x, if for every multiplicative open ball                       Bϵ(x) = { y | d(x, y) < ϵ} , 

ϵ > 1, there exists a natural number N such that  xn  ∈ Bϵ(x) for all                      n ≥ N, i. e, d(xn , x) → 1 as n → ∞. 

(ii) multiplicative Cauchy sequence if for all ϵ > 1, there exists N ∈ ℕ such that d(xn , xm) < ϵ for all m, n > N i. e , 

d(xn , xm ) → 1 as n → ∞. 

A multiplicative metric space is called complete if every multiplicative Cauchy sequence in X is multiplicative 

converging to  x ∈ X. 
 

Remark1.9. We note that the set of positive real numbers ℝ+ is not complete according to the usual metric. Let X = ℝ+ 

.Consider the sequence xn  = { 
1

n
 }. It is obvious {xn} is a Cauchy sequence in X with respect to usual metric spaces X 

and it is not complete metric space as every Cauchy sequence in X does not converge in ℝ+ i.e., 0 ∉ ℝ+. In case of 

multiplicative metric spaces, consider the sequence xn  = { a
1

n  } ,where a >1,  it is complete in multiplicative metric 
spaces, since             for n ≥ m, 

d∗(xn , xm ) =  
xn

xm
 
∗

 =  
a

1
n 

a
1

m 
 
∗

  = a
1

n
−

1

m  
∗

  = a
1

m
−

1

n  < a
1

m  < ϵ   if m >  
loga

log ϵ
 ,                               

where   a  ∗ =   
a     if a ≥ 1;
1

a
      if a < 1.

  

This implies {xn} is a Cauchy sequence in X and it converges to 1∈ ℝ+ as n → ∞. Hence (X, d) is a complete 

multiplicative metric space. 

 

In 2012, Özavşar and Çevikel[8] introduced the concepts of Banach-contraction, Kannan-contraction, and Chatterjea-

contraction mappings in the sense of multiplicative metric spaces as follows:  

 

 (Banach-contraction). Let (X, d) be a complete multiplicative metric space and let f: X → X be a multiplicative 

contraction if there exists a real constant λ ∈ [0, 1) such that  

           d(f(x), f(y)) ≤ d(x, y)λ for all x, y ∈ X. Then f has a unique fixed point. 

(Kannan-contraction). Let (X, d) be a complete multiplicative metric space. Suppose the mapping f : X → X satisfies 

the contraction condition 

         d(fx, fy) ≤ (d(fx, x) · d(fy, y))λ, for all x, y ∈ X, where λ ∈ [0, 
1

2
). 

 Then f has a unique fixed point in X and for any x ∈ X, iterative sequence (fn(x)) converges to the fixed point. 

(Chatterjea-contraction). Let (X, d) be a complete multiplicative metric space. Suppose the mapping f : X → X 

satisfies the contraction condition 

        d(fx,fy) ≤ (d(fy, x) · d(fx, y))λ, for all x, y ∈ X, where λ ∈ [0, 
1

2
). 

Then f has a unique fixed point in X and for any x ∈ X, iterative sequence (fn(x)) converges to the fixed point. 

 

2. MAIN RESULTS 

 

 Now we prove a fixed point theorem for a map that satisfy rational inequality. 

 

Theorem 2.1. Let f be a continuous self- mapping defined on a complete multiplicative metric space X   and  f satisfies 

the following conditions : 

(2.1) d(fx, fy) ≤ [𝑑(𝑥, 𝑓𝑥) . 𝑑(𝑦, 𝑓𝑦)] 𝑎1 . [𝑑 𝑥, 𝑓𝑦 . 𝑑(𝑦, 𝑓𝑥)] 𝑎2 . [𝑑( 𝑥, 𝑦 )]𝑎3.  [
𝑑(𝑥,𝑓𝑥) 𝑑(𝑦 ,𝑇𝑦)

𝑑(𝑥,𝑦)
]𝑎4  

                              .{ 𝑚𝑎𝑥 {𝑑(𝑥, 𝑓𝑥) , 𝑑(𝑦, 𝑓𝑦) , 𝑑(𝑥, 𝑓𝑦) , 𝑑(𝑦, 𝑓𝑥) ,
𝑑(𝑥,𝑓𝑥 ).𝑑(𝑦 ,𝑓𝑦).𝑑  (𝑦 ,𝑓𝑥).

𝑑(𝑥,𝑦)
}}𝑎5  

for all x, y ∈ X  and  2𝑎1 + 2𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 < 1 where  𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 ∈[0,1].  
Then T has unique fixed point. 

Proof. Let {𝑥𝑛} be a sequence in X, defined as follows: 

Let 𝑥0 ∈ X, f(𝑥0) = 𝑥1,f(𝑥1) = 𝑥2,···,f(𝑥𝑛 ) = 𝑥𝑛+1. 
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If  𝑥𝑛= 𝑥𝑛+1 for some n∈ Ν then 𝑥𝑛  is a fixed point of f. 

Taking 𝑥𝑛≠ 𝑥𝑛+1 for all n ∈ Ν 

From (2.1), we have 

d( 𝑥𝑛+1, 𝑥𝑛 ) = d(T𝑥𝑛 ,T𝑥𝑛−1) 

   ≤[𝑑(𝑥𝑛 , 𝑓𝑥𝑛 ) . 𝑑(𝑥𝑛−1 , 𝑓𝑥𝑛−1)] 𝑎1. [𝑑 𝑥𝑛 , 𝑓𝑥𝑛−1 . 𝑑(𝑥𝑛−1 , 𝑓𝑥𝑛 )] 𝑎2.[𝑑( 𝑥𝑛 , 𝑥𝑛−1  )]𝑎3 . [
𝑑(𝑥𝑛 ,𝑓𝑥𝑛 ) 𝑑(𝑥𝑛−1 ,𝑇𝑥𝑛−1)

𝑑(𝑥𝑛 ,𝑥𝑛−1)
]𝑎4 . 

{ 𝑚𝑎𝑥 {𝑑(𝑥𝑛 , 𝑓𝑥𝑛) , 𝑑(𝑥𝑛−1 , 𝑓𝑥𝑛−1) , 𝑑(𝑥𝑛 , 𝑓𝑥𝑛−1) , 𝑑(𝑥𝑛−1 , 𝑓𝑥𝑛 ) ,
𝑑(𝑥𝑛 ,𝑓𝑥𝑛 ).𝑑(𝑥𝑛−1 ,𝑓𝑥𝑛−1).𝑑  (𝑥𝑛−1 ,𝑓𝑥𝑛 ).

𝑑(𝑥𝑛 ,𝑥𝑛−1)
}}𝑎5  

  ≤[𝑑(𝑥𝑛 , 𝑥𝑛+1) . 𝑑(𝑥𝑛−1 , 𝑥𝑛 )] 𝑎1. [𝑑 𝑥𝑛 , 𝑥𝑛  . 𝑑(𝑥𝑛−1 , 𝑥𝑛 )] 𝑎2.[𝑑( 𝑥𝑛 , 𝑥𝑛−1  )]𝑎3 .[
𝑑(𝑥𝑛 ,𝑥𝑛 +1) 𝑑(𝑥𝑛−1 ,𝑥𝑛 )

𝑑(𝑥𝑛 ,𝑥𝑛−1)
]𝑎4 .              

{ 𝑚𝑎𝑥 {𝑑(𝑥𝑛 , 𝑥𝑛+1) , 𝑑(𝑥𝑛−1 , 𝑥𝑛 ) , 𝑑(𝑥𝑛 , 𝑥𝑛 ) , 𝑑(𝑥𝑛−1 , 𝑥𝑛+1) ,
𝑑(𝑥𝑛 ,𝑥𝑛 +1).𝑑(𝑥𝑛−1 ,𝑥𝑛 ).𝑑  (𝑥𝑛−1 ,𝑥𝑛 +1).

𝑑(𝑥𝑛 ,𝑥𝑛−1)
}}𝑎5  

     ≤[𝑑(𝑥𝑛 , 𝑥𝑛+1) . 𝑑(𝑥𝑛−1 , 𝑥𝑛 )] 𝑎1. [𝑑 𝑥𝑛+1 , 𝑥𝑛 . 𝑑(𝑥𝑛−1 , 𝑥𝑛)] 𝑎2.[𝑑( 𝑥𝑛 , 𝑥𝑛−1  )]𝑎3 .                                                                         

[𝑑(𝑥𝑛 , 𝑥𝑛+1)]𝑎4 .[𝑑(𝑥𝑛 , 𝑥𝑛+1)2 . 𝑑(𝑥𝑛−1 , 𝑥𝑛 )]𝑎5 

d( 𝑥𝑛+1, 𝑥𝑛 ) ≤ [𝑑(𝑥𝑛 , 𝑥𝑛+1)]𝑎1+𝑎4 +𝑎2+2𝑎5. [𝑑(𝑥𝑛 , 𝑥𝑛−1)]𝑎1+𝑎2+𝑎5+𝑎3 , 

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−1 , 𝑥𝑛 )]𝑕, 

where h = 
𝑎1+𝑎2 +𝑎5+𝑎3

1−(𝑎1+𝑎4+𝑎2+2𝑎5)
 < 1. 

Similarly, d(𝑥𝑛−1, 𝑥𝑛 ) ≤ [𝑑(𝑥𝑛−2 , 𝑥𝑛−1)]𝑕 , 

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−2 , 𝑥𝑛−1)]𝑕2
. 

Continue like this we get,  

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥0 , 𝑥1)]𝑕𝑛
 

For n > m, d(𝑥𝑛 , 𝑥𝑚 ) ≤ d(𝑥𝑛 , 𝑥𝑛−1) · d(𝑥𝑛−1, 𝑥𝑛−2) · · · d(𝑥𝑚 , 𝑥𝑚+1) 

                                  ≤ 𝑑(𝑥0 , 𝑥1) 𝑕
𝑛−1+𝑕𝑛−2+⋯𝑕𝑚

 

                                   ≤ 𝑑(𝑥0 , 𝑥1) 
𝑕𝑚

1−𝑕  . This implies d(𝑥𝑛 , 𝑥𝑚) →1(n, m → ∞). 
 

Hence (𝑥𝑛 ) is a Cauchy sequence. By the multiplicative completeness of X, there is z ∈ X such that 𝑥𝑛  → z (n →∞). 

Now we show that z is fixed point of f. 

Since f is continuous and 𝑥𝑛  → z (n →∞) so, 𝑙𝑖𝑚𝑛→∞ 𝑓 𝑥𝑛= fz = 𝑙𝑖𝑚𝑛→∞ 𝑥𝑛+1= z,  

i.e., z is a fixed point of f. 

 

Uniqueness: Suppose  z, w (z ≠ w) be two fixed point of f, then from (2.1), we have 

 

d(v, w) = d(fv, fw) 

≤ [𝑑(𝑣, 𝑓𝑣) . 𝑑(𝑤, 𝑓𝑤)] 𝑎1 . [𝑑 𝑣, 𝑓𝑤 . 𝑑(𝑤, 𝑓𝑣)] 𝑎2 . [𝑑(𝑣, 𝑤 )]𝑎3 .  [
𝑑(𝑣,𝑓𝑣) 𝑑(𝑤 ,𝑇𝑤)

𝑑(𝑣,𝑤)
]𝑎4 

                              .{ 𝑚𝑎𝑥 {𝑑(𝑣, 𝑓𝑣) , 𝑑(𝑤, 𝑓𝑤) , 𝑑(𝑣, 𝑓𝑤) , 𝑑(𝑤, 𝑓𝑣) ,
𝑑(𝑣,𝑓𝑣).𝑑(𝑤,𝑓𝑤 ).𝑑  (𝑤 ,𝑓𝑣).

𝑑(𝑣,𝑤)
}}𝑎5  

d(v, w) ≤ [𝑑(𝑣, 𝑤)]𝑎3+2𝑎2+𝑎5−𝑎4  this implies that d(v, w) = 1 i.e., v = w. 

Hence f has a unique fixed point . 
 

Corrollary1. On Putting 𝑎2 = 𝑎3 = 𝑎4 = 𝑎5 =  0  in (2.1), get  Kannan-contraction[8] in the sense of multiplicative 

metric spaces. 

Let (X, d) be a complete multiplicative metric space. Suppose the mapping f : X → X satisfies the contraction condition 

        d(fx,fy) ≤ (𝑑(𝑓𝑥, 𝑥) · 𝑑(𝑓𝑦, 𝑦))𝑎1 , for all x, y ∈ X, where 𝑎1 ∈ [0, 
1

2
). 

Then f has a unique fixed point in X. 

 

Corollary 2. On Putting 𝑎2 =  𝑎4 =  𝑎5 = 0 in (2.1), we get  Fisher-contraction [4] in the sense of multiplicative metric 

spaces as follows: 
Let f be a continuous self- mapping defined on a complete multiplicative metric space X, further f satisfies the 

following conditions  

d(fx, fy) ≤ [𝑑(𝑥, 𝑓𝑥) . 𝑑(𝑦, 𝑓𝑦)] 𝑎1 . [𝑑( 𝑥, 𝑦 )]𝑎3,for all x, y ∈ X  and  2𝑎1 + 𝑎3 < 1, where  

 𝑎1, 𝑎3 ∈[0,1] . 

Then T has unique fixed point. 

 

Corollary 3. On Putting 𝑎2 = 𝑎3 = 𝑎4 =  𝑎5 = 0 in (2.1), we get  Chatterjea-contraction[8] in the sense of multiplicative 

metric spaces. 

Let (X, d) be a complete multiplicative metric space. Suppose the mapping f : X → X satisfies the contraction condition 

        d(fx,fy) ≤ (𝑑(𝑓𝑦, 𝑥) · 𝑑(𝑓𝑥, 𝑦))𝑎1 , for all x, y ∈ X, where 𝑎1 ∈ [0, 
1

2
). 
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Then f has a unique fixed point in X. 

 

Corollary 4. On Putting 𝑎1 =  𝑎2 =  𝑎4 = 𝑎5 = 0 in (2.1), we get   Banach-contraction[8] in the sense of multiplicative 

metric spaces as follows: 

Let (X, d) be a complete multiplicative metric space and let f: X → X be a multiplicative contraction if there exists a 

real constant 𝑎3 ∈ [0, 1) such that  

           d(f(x), f(y)) ≤ 𝑑(𝑥, 𝑦)𝑎3  for all x, y ∈ X. Then f has a unique fixed point. 

 

Corollary 5. On Putting  𝑎4 =  𝑎5 = 0, in (2.1), we get   Ciric-contraction[3] in the sense of multiplicative metric spaces 

as follows: 
Let f be a continuous self- mapping defined on a complete multiplicative metric space X, further f satisfies the 

following conditions  

d(fx, fy) ≤ [𝑑(𝑥, 𝑓𝑥) . 𝑑(𝑦, 𝑓𝑦)] 𝑎1 . [𝑑 𝑥, 𝑓𝑦 . 𝑑(𝑦, 𝑓𝑥)] 𝑎2 . [𝑑( 𝑥, 𝑦 )]𝑎3 , 

for all x, y ∈ X  and  2𝑎1 + 2𝑎2 + 𝑎3 < 1 where  𝑎1, 𝑎2, 𝑎3 ∈[0,1] . 

Then T has unique fixed point. 

 

Corollary 6. On Putting 𝑎1 =  𝑎4 =  𝑎5 = 0 in (2.1), we get   Reich-contraction[9] in the sense of multiplicative metric 

spaces as follows: 

Let f be a continuous self- mapping defined on a complete multiplicative metric space X, further f satisfies the 

following conditions  

d(fx, fy) ≤ [𝑑 𝑥, 𝑓𝑦 .𝑑(𝑦, 𝑓𝑥)] 𝑎2 . [𝑑( 𝑥, 𝑦 )]𝑎3, for all x, y ∈ X  and  2𝑎2 + 𝑎3  < 1 where 

  𝑎2, 𝑎3∈[0,1]. Then T has unique fixed point. 

 

Corollary 7. On Putting 𝑎1 =  𝑎2 =  𝑎5 = 0 in (2.1), we get  jaggi-contraction[6] in the sense of multiplicative metric 

spaces as follows: 

Let f be a continuous self- mapping defined on a complete multiplicative metric space X, further f satisfies the 

following conditions  

d(fx, fy) ≤  [𝑑( 𝑥, 𝑦 )]𝑎3 .  [
𝑑(𝑥,𝑓𝑥) 𝑑(𝑦,𝑇𝑦)

𝑑(𝑥,𝑦)
]𝑎4 , 

for all x, y ∈ X  and  𝑎3 + 𝑎4 < 1 where 𝑎3, 𝑎4 ∈[0,1] . 

Then T has unique fixed point. 
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