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Abstract: Adleman demonstrate that we can deoxyribonucleic acid (DNA) strands to solve an instance of the 

Hamiltonian path problem (HPP). One year later, Lipton solved another NP hard problem. In this paper, we use this 

model for developing a new DNA algorithm to solve longest and shortest path with forbidden pairs. Our algorithm 

works in polynomial time. 
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I. INTRODUCTION 

 

With Watson-Crick complementarily and massive parallelism features of DNA, we can solve NP hard problems in 

linear or polynomial time. It is clear we do not have any polynomial algorithms to solve NP hard problems with silicon 

base computers; But DNA computing provides powerful features which can solve those problems in polynomial steps. 
Adleman [1] solved Hamiltonian path problem of size n. That was the first algorithm for DNA computing. Lipton [5] 

solved the second NP hard problem with those operations. Some other NP-hard problems which have been solved [6-

21].  

In this paper, the DNA operations proposed by Adleman [1] and Lipton [5] are used to solve Longest path with 

forbidden pairs. 

For a, given Graph ),( EVG   and a collection  )},(),....,,{( 11 mm babaC   pairs of vertices from V. a minimum 

solution is simple path in G that contains at most one vertex from each pair in C with lonest path. 

 In Section 2, the Adleman–Lipton model is introduced in detail. Section 3 we will present a DNA algorithm for 

solving the Longest and shortest path with forbidden pairs problem and the complexity of the proposed algorithm is 

described. We give conclusions in Section 4.  
 

II. ADLEMAN-LIPTON MODEL 

 

Bio-molecular computers work at the molecular level. Since biological and mathematical operations have some 

similarities, DNA, the genetic material that encodes the living organisms, is stable and predictable in its reactions and 

can be used to encode information for mathematical problems. DNA algorithms typically solve problems by initially 

assembling large data sets as input and then eliminating undesirable solutions [14].  

A DNA (deoxyribonucleic acid) is a polymer, which is strung together from monomers called deoxyribonucleotides 

[14]. Distinct nucleotides are detected only with their bases [13]. 
 

Those bases are adenine (A), guanine (G), cytosine (C), and thymine (T). Two strands of DNA can form (under 

appropriate conditions) a double strand, if the respective bases are the Watson–Crick complements of each other, i.e., A 

matches T and C Matches G; also 3’- end matches 5’- end. For example, strands 5’-ACCGGATGTCA-3’ and 3’-
TGGCCTACAGT-5’ can form a double strand. We also call them as the complementary strand of each other [12]. 

The length of a single DNA strand is the number of nucleotides comprising the single strand. Thus, if a single DNA 

strand includes 20 nucleotides, it is called a 20 mer. The length of a double strand (where each nucleotide is base 

paired) is counted in the number of base pairs [4]. Thus, if we make a double strand from two single strands of length 

20 mer, then the length of the double strand is 20 base pairs, also written as 20 bp for more discussion of the relevant 

biological background, refer to [3]. The DNA operations proposed by Adleman and Lipton [2] are described below. 

A (test) tube is a set of molecules of DNA (i.e. a multi-set of finite strings over the alphabet {A, C, G, T}). The 

following operations perform on tubes [2]:  

http://en.sbu.ac.ir/
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(1) Merge (T1, T2): for two given test tubes T1, T2 it stores the union 21 TT 
 in T1 and leaves T2 empty [4]; 

(2) Copy (T1, T2): for a given test tube T1 it produces a test tube T2 with the same contents as T1 [2]; 

(3) Detect (T): Given a test tube T it outputs ‘‘yes’’ if T contains at least one strand, otherwise, outputs ‘‘no’’ [2]; 

(4) Separation (T1, X, T2): for a given test tube T1 and a given set of strings X it removes all single strands containing 

a string in X from T1, and produces a test tube T2 with the removed strands [3]; 

(5) Selection (T1, L, T2): for a, given test tube T1 and a given integer L it removes all strands with length L from T1, 

and produces a test tube T2 with the removed strands [8]; 

(6) Cleavage (T, 10 ): for a, given test tube T and a string of two (specified) symbols 10
 it cuts each double trend 

containing 
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  in T into two double strands as follows: 
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(7) Annealing (T): for a, given test tube T it produces all feasible double strands in T. The produced double strands are 

still stored in T after Annealing [6]; 

(8) Denaturation (T): for a, given test tube T it dissociates each double strand in T into two single strands [7]; 
(9) Discard (T): for a, given test tube T it discards the tube T [11]; 

(10) Append (T, Z): for a, given test tube T and a given short DNA singled strand Z it appends Z onto the end of every 

strand in the tube T [12]; 

Since these eleven manipulations are implemented with a constant number of biological steps for DNA strands, we 

assume that the complexity of each manipulation is )O(1 steps [14]. 

 

 
Fig. 1 Graph G. 

 

III. SOLVING LONGEST AND SHORTEST FORBIDDEN PATH BY ADLEMAN-LIPTON MODEL 

 

Let ),( EVG   be a directed graph with the set of vertices being },,2,1|{ mkAV k    and the set of edges being 

},...,2,1|{ nieE i  [3]. Let |E|=d. In the following, the symbols ),...,2,1,,,2,1(,,,,# mjmkBAYX jk    denote 

distinct DNA singled strands with same length, say 10-mer. And | |.| |  denotes the length of the DNA singled strand. 

Obviously, the length of the DNA singled strands greatly depends on the size of the problem involved to distinguish all 

above symbols [3]. We assume the DNA singled strand jiY ,  is used to denote the weights on the edges jie ,  in E, so 

jiji wY ,, | || | 
.  

Let }{ ,, jiEe wMaxL
ji  .Suppose that all weights in the given graph are commensurable, i.e., there exists a number y 

such that each weight is an integral multiple of y (here, take y=10) in the following discussion. In our previous work 

[11] we defined P and Q tubes and introduced an algorithm to produce all paths from a vertex to another one. We use 

that algorithm to produce all paths. 

 

IV. PRODUCE ALL PATHS WHICH CONTAINS AT MOST ONE VERTEX IN EACH PAIR IN C 

 

We introduced an algorithm [11] to encode all paths. for instance 

#BAYBAYBAYBAYBAYBA# 775,7552,5224,2442,4221,211  denotes 1→2→4→6→7. 
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In this step, we want to select all paths which have at most one vertex in each pair of C and remove the remaining set. 

If we have a pair like (5,2) in C, then 1→2→4→6→7 is acceptable answer. but for (4,1) is not acceptable because 

vertex 1 and 4 are in that path. 

In Collection C, we show the i-th pair with Ci1,Ci2 which denotes the first and second element of i-th pair. 

 

End for
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In 1-2, we choose all paths which contain the first element of i-th pair, and put them in T1, if any of those paths 
contains the second element of i-th path, it is invalid path and we need to remove it. Here we have simple loop then our 

algorithm is O(m) which is depends on the size of set C. 

 

V. FIND THE LONGEST AND SHORTEST ANSWER 

 

Each strand contains n number of iiBA
and two # and the length of iiBA

are 20. also, the length ||#|| is 10. Each strand 

has n number of jiji wY ,, | || |   then the maximum length of each strand is 20*n+20+n*L. 

For instance, for this strand the maximum length is 20*7+20+7*L 

#BAYBAYBAYBAYBAYBA# 775,7552,5224,2442,4221,211  

End for
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For finding the shortest one we use this algorithm. 

End for

exit
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L is a constant, then this algorithm will terminate in O(n). with this algorithm we can find shortest path and longest 

path in O(n). 
Then our algorithm will terminate in O(m+n). 

 

VI. CONCLUSION 

 

In this paper, we proposed new polynomial algorithm for two of NP-Hard Problems.  

As you can see this algorithm will finish in )( mnO   
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