
IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.31131 162

Algorithm to find Minimum Weight Spanning

Tree dynamically

Ishwar Baidari
1
, S.P. Sajjan

2

Associate Professor, Department of Computer Science, Karnataka University, Dharwad, India1

Research Scholar, Department of Computer Science, Karnataka University, Dharwad, India2

Abstract: A minimum spanning tree is a spanning tree of a connected undirected graph. Each edge is labelled with its

weight. It connects all the vertices together with the minimal total weight for its edges. In this paper we designed an

algorithm to find minimum weight spanning tree.

Keywords: Spanning tree, minimum spanning tree, minimum weight.

I. INTRODUCTION

Here’s a classical task on graphs. We have a group of

cities and we must wire them to provide them all with

electricity. Out of all possible connections we can make,

which one is using minimum amount of wire.

To wire N cities, it’s clear that, you need to use at least N-

1 wires connecting a pair of cities. The problem is that

sometimes you have more than one choice to do it. Even
for small number of cities there must be more than one

solution as shown on the image bellow.

A. WIRING CITIES

Here we can wire these four nodes in several ways, but the

question is, which one is the best one. By the way defining
the term “best one” is also tricky. Most often this means

which uses least wire, but it can be anything else

depending on the circumstances.

As we talk on weighted graphs we can generally speak of

a minimum weight solution through all the vertices of the

graph. By the way there might be more the one equally

optimal (minimal) solutions.

II. OVERVIEW

Obviously we must choose those edges that are enough to
connect all the vertices of the graph and whose sum of

weights is minimal. Since we can’t have cycles in our final

solution it must form a tree. Thus we’re speaking on a

minimum weight spanning tree, as the tree spans over the

whole graph.

Does each connected and weighted graph have a minimum

spanning tree? The answer is yes! By removing the cycles

from the graph G we get a spanning tree, since it’s

connected. From all possible spanning trees one or more

are minimal.

A. SPANNING TREES OF G

2

A

C

D

B 1

-1

MINIMUM

23

A

C

D

B

-1 11

3

2

aa

A

C

D

B 1

-1

7

11

2

A

C

D

B 1

11

2

A

C

D

B 1

-1

7

11

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.31131 163

Although there are more than one spanning tree of G, one

is the minimum spanning tree (T) If w(u, v) is the weight

of the edge (u, v), we can speak of weight of any spanning

tree T – w(T) which is the sum of all the edges forming

that tree. Thus the weight of the minimum spanning tree is

less than the weight of whatever other spanning tree of G.

After we’re sure that there is at least one minimum

spanning tree for all connected and weighted graphs we

only need to find it somehow. We can go with an

incremental approach. At the end we’ll have the minimum
spanning tree (MST), but before that on each step of our

algorithm we’ll have a sub-set of this final tree, which will

grow and grow until it becomes the real MST. This subset

of edges we’ll keep in one additional set A.

B. GROWING MINIMUM SPANNING TREE

On each step the set of edges forming MST grow with one

edge more! So far we know that on each step we have a

subset of the final MST, but first we need to answer a

couple of questions.

C. How do we start?

Well, we’ll start with the empty set of edges. Clearly the

empty set is a subset of any other set, thus it will be also a

subset of the MST.

Since the MST is a subset of edges of G we start with the

empty set of edges!

D. How do we grow the tree?

Another question we must answer is how to grow the tree.

Since we have a MST sub-set (A) on each step how do we

add an edge to this set in order to get another (bigger than

the previous one) subset of edges, which will be again a

subset of the minimum spanning tree?

Clearly we must make a decision which edge to add to the
growing subset and this is the tricky part of this algorithm.

III. CHOSE THE LOWEST WEIGHT EDGE!

To find the minimum spanning tree on each step we must

get the lowest weighted edge that connects our subset (A)

with the rest of the vertices.

A. CHOSING AN EDGE

3
2

A

C

D

B 1

-1

7

1

1

G

A

C

D

B

-1

G

C

A B

D

A

C

D

B

-1

A

C

D

B 1

-1

2

A

C

D

B 1

-1

3
2

A

C

D

B 1

-1

7

11

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.31131 164

Each step choosing lowest weight edge

However can we be sure that by choosing the less

weighted edge we’ll get the MST? Well, let’s assume that

isn’t right in order to prove that wrong!

OK so on some step of our growing sub-tree we don’t get

the lightest edge (u, v), because we somehow doubt this

rule, and we get another edge – let’s say (x, y). Mind that

w(x, y) >= w (u, v).

W(B, C) < w(A, C)

Thus our final MST will contain somewhere in its set of

edges the edge (x, y), but the weight of MST w(T) is

minimal, and if we get another spanning tree that contains

the exact same edges as T but instead of (x, y) contains (u,

v) we’ll get a smaller weight!

That isn’t possible! Thus we proved that on each step we

must get the less weighted edge.

This particular approach is called “greedy”, because on

each step we get the best possible choice. However greedy

algorithms don’t always get the right or optimal solution.

Fortunately for MST this isn’t true so we can be greedy as

much as we can!

OK let’s make a summary of our algorithm in the

following pseudo code.

B. Pseudo Code

1. We start with an empty set (A) subset of the final MST;

2. Until A does not form T:

 a. Get the less weighted edge u from G;

 b. Add u to A;

3. Return A

C. Feature work
In a graph G and Minimum Spanning Tree(MST) T,

suppose that we have decrease the weight of one the edge

not in T(Increase the edge, which is in T). Written an

algorithm for finding the MST in the modified graph.

D. Weight Decreases

Whenever the weight of a non-tree edge (i, j) is decreased,

one has to find the maximum weight edge (x, y) along the

path from i to j in T and to remove it if w(x, y) > w(i, j).

This can be accomplished by using any dynamic tree data

structure to store the MST.
 The procedure to update the minimum spanning tree is

described in Algorithm 2. Vertex i is made the new root of

the tree. The maximum weight edge (x, y) in the path from

j to i is computed in line. If the weight of edge (x, y) is

larger than that of edge (i, j) (comparison in line 5), then

the former is removed from the tree by the Cut(x, y)

operation in line 6 and the new edge (i, j) is inserted by the

Link (i, j, w(i, j)) operation in line 7. The updated MST is

returned in line 9. The efficiency of the above

computations depends on the underlying structure used to

maintain the MST and to implement the path operations. If

RD-trees or DRD-trees are used, then Algorithm 2 runs in
time O(|V|). It runs in time O(log |V|) if a more complex

implementation (such as ST-trees) is used.

E. Pseudo Code (Decrease weight of non-tree edge)

1. We start with an existing MST;

2. Decrease the weight non tree edge

I. If Decrease non tree edge weight

II. Repeat until A does not form T:

a. Get the less weighted edge u from G;

b. Add u to A;

3. Return A

F. Weight Increasing

Whenever the weight of a graph edge (i, j) is increased,

one has to find the minimum weight edge (x, y) along the

path from i to j in G and to remove it if w(x, y) < w(i, j).

This can be accomplished by using any dynamic tree data

structure to store the MST.

The procedure to update the minimum spanning tree is

described in Algorithm 2. Vertex i is made the new root of
the tree. The minimum weight edge (x, y) in the path from

j to i is computed in line. If the weight of edge (x, y) is

larger than that of edge (i, j) (comparison in line 5), then

the former is removed from the tree by the Cut(x, y)

operation in line 6 and the new edge (i, j) is inserted by the

Link (i, j, w(i, j)) operation in line 7. The updated MST is

2.

1.

A

C

D

B

-1

A

C

D

B
1

3
2

A

C

D

B 1

-1

7

1

1

G

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 11, November 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.31131 165

returned in line 9. The efficiency of the above

computations depends on the underlying structure used to

maintain the MST and to implement the path operations. If

RD-trees or DRD-trees are used, then Algorithm 2 runs in

time O(|V|). It runs in time O(log |V|) if a more complex

implementation (such as ST-trees) is used.

G. Pseudo Code (Increasing weight of tree edge)

1. We start with an existing MST;

2. Decrease the weight non tree edge
I. If Decrease non tree edge weight

II. Repeat until A does not form T:

a. Get the less weighted edge u from G;

b. Add u to A;

3. Return A

IV. COMPLETE ALGORITHM: MINIMUM

WEIGHT SPANNING TREE DYNAMICALLY

INPUT: GRAPH G = (V, E), WEIGHTS W.

1: BUILD A LIST A WITH ALL (I, J) ∈ E;
2: SORT LIST A BY NON-DECREASING ORDER OF WEIGHTS;

3: USE LIST A TO COMPUTE THE MST(BY USING KRUSKAL

OR PRIMS) T = (V, E′);

4: ENTER NEW EDGE VALUE(EITHER

INCREASE/DECREASE)

5: INPUT NEW WEIGHT VALUE M AND N

6: FOR I=0 TO N DO //UPDATE

MATRIX

7: FOR J=0 TO M DO

8: IF(I==P-1 && J==Q-1)

9: INPUT M VALUE
10: COST[I][J]=M;

11: COST[J][I]=M;

12: BREAK;

13: END IF

14: END FOR

15: END FOR

16: LET (I, J) ∈ E BE THE EDGE WHOSE WEIGHT WILL

CHANGE TO WNEW ;

17: S ← A(I, J);

18: SET THE NEW EDGE WEIGHT: W(I, J) ← 𝑤𝑛𝑒𝑤 ;
19: RECOMPUTED THE MST(BY USING KRUSKAL OR PRIMS)

 T = (V, E′);

20: END

V. COMPLEXITY

A graph (positive weight edges) with a MST If some edge,

e is modified to a new value, what is the best way to

update the MST without completely remaking it. I think

this can be done in linear time. Also, it seems that I would

need a different algorithm based on whether 1) e is already
a part of the MST and 2) whether the new edge, e is larger

or smaller than the original.

A. There are 4 cases:

Edge is in MST and you decreasing value of edge:
Current MST is still MST

Edge is not in MST and you decreasing value of edge:

Add this edge to the MST. Now you've got exactly 1 cycle.

Based on cycle property in MST you need to find and

remove edge with highest value that is on that cycle. You

can do it using BFS or DFS. Complexity O(n).

Edge is in MST and you increasing its value of edge:
Remove this edge from MST. Now you have 2 connected

components that should be connected. You can calculate

both components in O(n) (BFS or DFS). You need to find
edge with smallest value that connects these components.

Iterate over edges in ascending order by their value.

Complexity O(n).

Edge is not in MST and you increasing its value of edge:
Current MST is still MST

B. Application

Actually this algorithm is used firstly by Borůvka which

started to wire Moravia in 1926. Even without knowing

that the “greedy” approach will lead him to the right
solution he optimally covered Moravia with electricity.

However this algorithm is too general and there are two

main algorithms – the Prim’s algorithm and the Kruskal’s

algorithm that we shall see in future posts.

The thing is that on each step we must get the less

weighted edge and both algorithms use different

approaches to do that.

REFERENCES

[1] Ellis Horowitz and Sartaj Sahni: Fundamental of Computer

Algorithms (1993) Galgotia Publications.

[2] Narsingh Deo, “Graph Theory with Applications to Engineering

and Computer Science”, PHI Learning, 204

[3] Mr. Hassan, “An efficient method to solve least cost minimum

spanning tree”, Computer and Information Sciences (2012) 24. 101-

105.

[4] Jothi, Raja, Raghavachari, Balaji. Approximation algorithms for the

capacitated minimum spanning tree problem and its variants in

network design. ACM Transaction on Algorithms (2) 265-282,

2005.

[5] Zhou, Gengai. Cao, Zhenya. Cao, Jian, Meng, Zhiqing, A genetic

algorithm approach on capacitated minimum spanning tree

problem”. International conference on computational intelligence

and security, 215-218, 2006.

