

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 7, July 2016

On Central Automorphisms Of Free Center-By-Metabelian Lie Algebras

Zerrin Esmerligil

Department of Mathematics, Çukurova University, Adana, Turkey

Abstract: We study central automorphisms of free center-by metabelian Lie algebras. Our main result exhibits the form of such automorphisms.

Keywords: Central Automorphism, Center-by-metabelian, Lie algebra

I.INTRODUCTION

Let F be the free Lie algebra with two free generators x an y over a field K, and let L be the free center-by-metabelian Lie algebra $F/_{[F^{''},F]}$. Clearly L is freely generated by the set $\{\bar{x},\bar{y}\}$, where $\bar{x}=x+[F^{''},F], \bar{y}=y+[F^{''},F]$. We write x,y instead of \bar{x},\bar{y} . By Aut(L) we denote the automorphism group of all automorphisms of L. Definition

Let $\theta \in Aut(L)$. If θ induces the identitiy mapping on the algebra L/Z(L) then it is called a central automorphism of L, where Z(L) is the center of L. If θ is a central automorphism of L then for every $u \in L$ we have $\theta(u) - u \in Z(L)$. It can be easily seen that Z(L) = F''/[F'', F]. Hence form of any central automorphism of L is

$$\theta(x) = x + u, \ \theta(y) = y + v, \qquad u, v \in L''$$

For any $g, h \in L$ we write

$$[g,h^n] = [g,\underbrace{h,...h}_{n-times}].$$

A basis in L'' is formed by the elements

$$[[g,y],x^{n_1},y^{n_2}],[x,y], (n_1,n_2 \ge 0), (1)$$

where $g \in L$ and the sum $n_1 + n_2$ is odd. (See [1], [7] and [8] for details).

Although there are many publications about central automorphisms of groups [2,3,4,5,6] the corresponding problems for relatively free Lie algebras are very rare. In [9], Ekici and Öztekin have given some characterizations of central automorphisms of free nilpotent Lie algebras.

In this work we prove that the following results.

Proposition

In the center-by-metabelian Lie algebra L every map $\varphi: L \to L$ defined by

$$\varphi: x \to x + \sum_{g \in L} \alpha_g \left[\left[[g, y] x^{m_1}, y^{m_2} \right] [x, y] \right] \quad \alpha_g \in K, g$$

$$x \to x + \sum \beta_h \left[\left[[h, y] x^{t_1}, y^{t_2} \right] [x, y] \right] \quad \beta_h \in K, h \in L$$

is an automorphism.

Proof

It can be easily seen that the Jacobian matrix of φ is invertible over U(L/L). Hence φ is an automorphism.

Theorem

Any central automorphism θ of L has the form

$$\theta: x \to x + \sum_{n_1, n_2} \alpha_g \left[g, \left[\left[\left[[x, y], y^{n_2}, \right] x^{n_1} \right], y \right] \right], \qquad (2)$$

$$y \to y + \sum_{n_1, n_2} \beta_h \left[g, \left[\left[\left[[x, y], y^{n_2}, \right] x^{n_1} \right], y \right] \right]$$

where, $g, h \in L'$, α_g , $\beta_h \in K$, $n_1 + n_2$, $r_1 + r_2$ are odd.

Let θ be a central automorphism of L. Then it has the form

$$\theta: x \to x + u,$$

 $y \to y + v,$

Where $u, v \in L''$. Then the Lie algebra L'' has a linear basis of the form (1). Thus, the elements u, v can be written as linear combinations of elements of the form (1). Therefore we define θ as

$$\theta: x \to x + \sum_{n_1, n_2} c_g \left[\left[\left[[g, y], x^{n_1} \right], y^{n_2} \right], [x, y] \right], \\ y \to y + \sum_{r_1, r_2} d_h \left[\left[\left[[h, y], x^{r_1} \right], y^{r_2} \right], [x, y] \right],$$

where $g,h\in {}^L\!/_{L''}$, $c_g,d_h\in K.$

Now let us apply the Jacobi identity to the elements

$$\left[\left[\left[g,y\right],x^{n_{1}}\right],y^{n_{2}}\right],\left[x,y\right]\right]$$
 and $\left[\left[\left[h,y\right],x^{r_{1}}\right],y^{r_{2}}\right],\left[x,y\right]\right]$

consecutively we obtain

ISSN (Online) 2393-8021 ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 7, July 2016

$$u = \left[\left[\left[[g, y], x^{n_1} \right], y^{n_2} \right], [x, y] \right]$$
$$= \left[g, \left[\left[\left[[x, y], y^{n_2} \right], x^{n_1} \right], y \right] \right]$$

And

$$v = \left[\left[\left[[h, y], x^{r_1} \right], y^{r_2} \right], [x, y] \right] = \left[h, \left[\left[\left[[x, y], y^{r_2} \right], x^{r_1} \right], y \right] \right].$$

Since $u, v \in L''$ we see that the elements g and h have to belong L'. Therefore θ has the form

$$\theta: x \to x + \sum_{n_1, n_2 \ge 0} \alpha_g \left[g, \left[\left[\left[[x, y], y^{n_2} \right], x^{n_1} \right], y \right] \right],$$

$$y \to y + \sum_{r_1, r_2 \ge 0} \beta_h \left[h, \left[\left[\left[[x, y], y^{r_2} \right], x^{r_1} \right], y \right] \right],$$

where $g, h \in L'$, $\alpha_g, \beta_h \in K$.

Lemma

Let $\theta \in Aut(L)$. If $[\theta(\omega), \omega] = 0$ for all $w \in L$, then it is central.

Proof

Let $\theta \in Aut(L)$ such that $[\theta(\omega), \omega] = 0$ for all $\omega \in L$. We define θ as

$$\theta$$
: $x \to \alpha x + \beta y + u$,
 $y \to \gamma x + \delta y + v$,

where $u, v \in L', \alpha, \beta, \gamma, \delta \in K$. By the assumption

$$[\theta(x), x] = \beta[y, x] + [u, x] = 0,$$

 $[\theta(y), y] = \gamma[x, y] + [v, y] = 0,$

These equalities lead $\beta = \gamma = 0$. Hence θ has the form

$$\theta$$
: $x \to \alpha x + u$, $y \to \delta y + v$.

From the equality $[\theta(x+y), x+y] = 0$ we get

$$0 = [\alpha x + u + \delta y + v, x + y]$$

= $\alpha[x, y] + [u, x] + [u, y] + \delta[y, x] + [v, x] + [v, y]$
= $(\alpha - \delta)[x, y] + [u, x + y] + [v, x + y].$

Hence
$$(\alpha - \delta) = 0$$
. Thus θ has the form $\theta: x \to \alpha x + u$, $y \to \alpha y + v$,

where $\alpha \neq 0$.

Since $\theta \in Aut(L)$ then

$$[\theta(x), \theta(y)] \equiv \alpha^2[x, y] (mod[F'', F]). \tag{3}$$

Let us calculate $[\theta(x), \theta(y)]$.

$$[\theta(x), \theta(y)] = [\alpha x + u, \alpha y + v]$$

= $\alpha^2[x, y] + \alpha[x, v] + \alpha[u, y] + [u, v]$

By (3) we get $\alpha([x, v] + [u, y]) + [u, v] \in [F', F]$.

Hence $u, v \in F''$.

Now consider the element $\omega = x - [x, y]$.

$$0 = [\theta(\omega), \omega]$$

$$= [\theta(x) - [\theta(x), \theta(y)], \omega]$$

$$= [\alpha x + u - [\alpha x + u, \alpha y + v], \omega]$$

$$= [\alpha x + u - \alpha^{2}[x, y], x - [x, y]]$$

$$= -\alpha[x, [x, y]] - \alpha^{2}[[x, y], x]$$

$$= (\alpha - \alpha^{2})[[x, y], x]$$

Thus $\alpha = 1$. Therefore θ has the form $\theta: x \to x + u$,

$$y \rightarrow y + v$$

where $u, v \in L''$.

REFERENCES

- M.Alexandrou and R. Stöhr, Free center-by-abelian (abelian-byexponent) groups, J. Alg., 430 191-237, 2015.
- [2] M. Curran, Finite groups with central automorphism group of minimal order, Math. Proc. R. Ir. Acad. 104 A(2), 223-229, 2004.
- [3] M. Curran and D.McCaughan, Central automorphisms of finite groups, Bull.Austral. Math. Soc. 34,191-198, 1986.
- [4] M. Curran, and D.McCaughan, Central automorphisms that almost inner, Comm. Algebra 29 (5),2081-2087, 2001.
- [5] G. Cutolo, A note on central automorphisms of groups, Atti Accad. Naz. Lincei CI. Sci. Fis. Mat. NatCan. J. Math. No.2, 49-279, 1990ur. Rend. Lincei (9) Mat. Appl., 3 (1992), No.2, 103-106.
- [6] A. R. Jamali and H.Mousavi, On the central automorphism group of finite p- groups, Algebra . Coolog. 9 (1), 7-14, 2002.
- [7] J. V.Kuz'min, Free center-by-metabelian groups, Lie algebras and D-groups, Izv. Akad. Nauk SSSR, Ser. Mat., 41 (1), 215-224, 1977.
- [8] N.Mansuroğlu and R. Stöhr, Free center-by-metabelian, Lie rings, Proc. MIMS EPrint: 18, 2013.
- [9] Ö. Öztekin, N. Ekici, Central automorphisms of free nilpotent Lie algebras, (submitted)