

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

IARJSET

Vol. 3, Issue 8, August 2016

Čech MP-closed sets in closure spaces

T. Muthu Priya¹, A. Francina Shalini²

Research Scholar, Department of Mathematics, Nirmala College for women, Coimbatore, India¹

Assistant Professor, Department of Mathematics, Nirmala College for women, Coimbatore, India²

Abstract: The purpose of this paper is to define and study the notion of Čech MP-closed and Čech MP-open sets in Čech closure spaces and investigate their characterizations.

Keywords: Čech MP-closed sets, Čech MP-open sets.

I. INTRODUCTION

endowed with a grounded, Extensive and additive closure subset A of X is called a w-open set if its complement is a operators) and studied by many others[6][9].N. Levine [9] introduced g-closed sets. The concept of generalized closed sets and generalized continuous maps of **Definition 2.4**: Let (X,k) be a Cech closure space. A topological spaces extended to closure space in [4].D. And rijevic [1] initiated the study of β -open sets and β closed sets. In this paper we introduce the concept of Čech MP-closed sets and Čech MP-open sets and discuss some of its properties.

II. PRELIMINARIES

A map $k:P(X) \rightarrow P(X)$ defined on the power set P(X) of a set X is called a closure operator on X and the pair (X,k) is called a closure space if the following axioms are satisfied.

1. $k(\phi) = \phi$

- 2. $A \subseteq k(A)$ for every $A \subseteq X$
- 3. $k(A \cup B) = k(A) \cup k(B)$ for all $A, B \subseteq X$

A closure operator k on X is called idempotent if k(A)=k[k(A)] for all $A\subseteq X$.

Definition 2.1: A subset of a Čech - closure space (X,k) will be called Čech closed if k(A)=A and Čech -open if its complement is closed. i.e., if k(X-A)=X-A.

Definition 2.2: A subset A of a Čech closure space (X,K) is said to be

- 1. Čech regular open if A=int(k(A)) and Čech regular closed if A = k(int(A))
- 2. Čech pre open if $A \subseteq int(k(A))$ and Čech pre closed if $k(int(A)) \subseteq A$
- 3. Čech semi open if $A\subseteq k(int(A))$
- 4. Čech α -open if A \subseteq int (k(int(A))) and Čech α -closed if $K(int(k(A))) \subseteq A$
- 5. Čech β -open if A \subseteq k(int(k(A))) and Čech β -closed if $int(k(int(A))) \subseteq A$

Definition 2.3: Let (X, k) be a Čech closure space. A subset $A \subseteq X$ is called a Čech w-closed set if $k(A) \subseteq G$

Copyright to IARJSET

Čech spaces were introduced by Eduard Čech [5] (i.e., sets whenever A⊆G and G is semi-open subset of (X,k). A w-closed subset of (X,k).

> subset $A \subseteq X$ is called a Čech g-closed set if $k(A) \subseteq G$ whenever A⊆G and G is Čech-open subset of (X,k). A subset A⊆X is called a generalized open set, briefly a gopen set, if its complement is g-closed.

> **Definition 2.5:** Let (X,k) be a Čech closure space. A subset A \subseteq X is called a Čech $\alpha \psi$ -closed set if k(A) \subseteq G whenever $A \subseteq G$ and G is α -open subset of (X,k).

> **Definition 2.6:** Let (X,k) be a Čech closure space. A subset A \subseteq X is called a J-Čech closed set if $k_{\alpha}(A)\subseteq G$, whenever $A \subseteq G$ and G is semi-open subset of (X,k), where $k_{\alpha}(A)$ is the smallest α -closed set containing A.

> Definition 2.7: Let (X,k) be a Čech closure space. A subset A \subseteq X is called a Čech $\pi g\beta$ -closed set if k(A) \subseteq G whenever $A \subseteq G$ and G is π -open subset of (X,k).

III. ČECH MP-CLOSED SETS

Definition 3.1: Let (X,k) be a Čech closure space. A subset A⊆X is called a Čech MP-closed set closed set containing A if $k_{\beta}(A)\subseteq G$ whenever $A\subseteq G$ and G is π -open subset of (X,k), where $k_{\beta}(A)$ is the smallest β -closed set containing A. A subset A of X is called a MP-open set if its complement is a MP-closed subset of (X, k).

Definition 3.2: Let (X,k) be a Čech closure space. A subset A \subseteq X is called a Čech M-closed set if $k_{\beta}(A) \subseteq G$ whenever $A \subseteq G$ and G is Čech-open subset of (X,k), where $k_{\beta}(A)$ is the smallest β -closed set containing A.

Definition 3.3: Let (X,k) be a Čech closure space. A subset A \subseteq X is called a Čech N-closed set if $k_{\beta}(A) \subseteq G$ whenever $A \subseteq G$ and G is α -open subset of (X,k), where $k_{\beta}(A)$ is the smallest β -closed set containing A.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

subset A \subseteq X is called a Čech T-closed set if $k_{\beta}(A) \subseteq G$ operator on X by $k\{\phi\} = \{\phi\}, k\{a\} = k\{a, b\} = \{a, b\}, k\{b\} = \{a, b\}, k\{b\}, k\{b\} = \{a, b\}, k\{b\}, k\{b\}, k\{b\}, k\{b\}, k\{b\}, k\{b\}, k\{b\}, k\} = \{a, b\}, k\{b\}, k\{b\}, k\{b\}, k\} = \{a, b\}, k$ whenever $A \subseteq G$ and G is semi-open subset of (X,k), where $k_{\beta}(A)$ is the smallest β -closed set containing A.

Definition 3.5: Let (X,k) be a Čech closure space. A subset $A \subseteq X$ is called a Čech D-closed set if $k_{\beta}(A) \subseteq G$ whenever $A \subseteq G$ and G is pre-open subset of (X,k), where $k_{\beta}(A)$ is the smallest β -closed set containing A.

Theorem 3.6: Every Čech closed set is Čech MP-closed set

Proof: Let G be a π -open set of (X,k) such that A \subseteq G. Since A is closed k(A)=A. Therefore $k_{\beta}(A)\subseteq k(A)=A\subseteq G$. i.e., $k_{\beta}(A) \subseteq G$, where G is π -open. Therefore A is MPclosed set. Hence Every Čech closed set is Čech MPclosed set.

Remark 3.7: Converse of the above theorem need not be true which can be seen from the following example

Example 3.8: Let $X = \{a, b, c\}$ and define the closure operator k on X by $k\{\phi\}=\phi$, $k\{a\}=\{a\},k\{b\}=$ $\{b,c\},k\{c\}=k\{a,c\}=\{a,c\},k\{a,b\}=k\{b,c\}=k X=X$ Cech closed sets of $X = \{\phi, X, \{a\}, \{a, c\}\}$

 $\{a, c\}\}$

Then A={a,b} is Čech MP-closed set but not Čech closed set.

Theorem 3.9:

(a) Every Čech w-closed set is Čech MP-closed set.

(b) Every Čech g-closed set is Čech MP-closed set.

(c) Every \check{C} ech $\alpha\psi$ -closed set is \check{C} ech MP-closed set.

(d) Every J-Čech closed set is Čech MP-closed set.

(e) Every \check{C} ech $\pi g\beta$ -closed set is \check{C} ech MP-closed set.

Proof: (a) Let A be a \check{C} ech w-closed closed set. Then $k_{\beta}(A) \subseteq G$ whenever $A \subseteq G$ and G is π -open in X. But $k(A) \subseteq k_{\beta}(A)$ whenever $A \subseteq G, G$ is π -open in G. Now we have $k_{\beta}(A) \subseteq G, G$ is π -open. Therefore A is Čech MPclosed set.

Proof is obvious for others.

Remark 3.10: Converse of the above theorem need not be true which can be seen from the following example

Example 3.11:Le t X={a, b, c, d} and define the closure $k{b, c}=k{a, b, c}= {a, b, c}, k{c}=k{a, c}, k{d}=$ $k{a, d}=k{a, b, d}={a, b, d}, k{b, d}=k{c, d}=k{b, c, d}=$ $k{a, c, d}=k X=X$

 \check{C} ech w- closed set of X={ ϕ ,X,{a,b},{a, c},{a, b, c}, $\{a, b, d\}\}$

Čech MP-closed set of $X = \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, b\},$ $\{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{a$ $\{a, b, d\}, \{b, c, d\}\}$

Then $A = \{c,d\}$ is Čech MP-closed set but not in Čech wclosed set.

Definition 3.4: Let (X,k) be a Čech closure space. A **Example 3.12:** Let $X=\{a, b, c, d\}$ and define the closure $k\{b, c\}=k\{a, b, c\}=\{a, b, c\}, k\{c\}=k\{a, c\}=\{a, c\},$ $k{d} = k{a, d} = k{a, b, d} = {a, b, d}, k{b, d} = k{c, d} =$ $k\{b, c, d\} = k\{a, c, d\} = k X = X$

Čech g-closed set of $X = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, d\},$ $\{b, c\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\} \{b, c, d\} \}$

Čech MP-closed set of $X = \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, b\},$ $\{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{a$ $\{a, b, d, \{b, c, d\}\}\}$

Then $A=\{b\}$ is Čech MP-closed set but not in Čech gclosed set.

Example 3.13: Let X={a, b, c, d} and define the closure operator on X by $k\{\phi\}=\{\phi\}, k\{a\}=k\{a, b\}=\{a, b\}, k\{b\}=$ $k\{b, c\}=k\{a, b, c\}=\{a, b, c\}, k\{c\}=k\{a, c\}=\{a, c\},$ $k{d}=k{a, d}=k{a, b, d}={a, b, d}, k{b, d}=k{c, d}=$ $k{b, c, d} =k{a, c, d}=k X=X$

 \check{C} ech $\alpha \psi$ -closed set of X={ ϕ , X,{a},{a, b},{a, b, c}, $\{a, b, d\}\}$

Čech MP-closed set of $X = \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{c\}, \{d\}, \{a, b\}, \{a, b$ $\{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{a$ $\{a, b, d\}, \{b, c, d\}\}$

Then $A=\{b, c, d\}$ is Čech MP-closed set but not in Čech $\alpha\psi$ -closed set.

Example 3.14: Let $X=\{a, b, c\}$ and define the closure operator on X by $k\{\phi\}=\phi, k\{a\}=\{a\},k\{b\}=$ $\{b, c\}, k\{c\}=k\{a, c\}=\{a, c\}, k\{a, b\}=k\{b, c\}=k X=X$

J- \check{C} ech closed set of X = { ϕ , X, {a}, {c}, {a, c}}

Čech $\{a, b\}, \{b, c\}, \{a, c\}\}$

Then $A=\{a, b\}$ is Čech MP-closed set but not in J-Čech closed set.

Example 3.15 : Let X={a, b, c, d} and define the closure operator on X by $k\{\phi\}=\phi$, $k\{a\}=k\{d\}=k\{a, b\}=$ $k\{a, d\}=k\{a, b, d\}=\{a, b, d\}, k\{b\}=\{b\}, k\{c\}=$ $k{b, d}=k{c, d}=k{b, c, d}={b, c, d}, k{a, c}=k{a, c, d}=$ $\{a, c, d\}, k\{b, c\} = k\{a, b, c\} = k X = X$

 \check{C} ech $\pi g\beta$ -closed set of X={ ϕ , X,{b},{a, d},{b, d}, $\{c, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}, \{b, c, d\}\}$

Čech MP-closed set of $X=\{\phi, X, \{b\}, \{d\}, \{a, b\}, \{a, c\}, \{a,$ $\{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\},\$ $\{b, c, d\}\}$

Then A={a,b} is Čech MP-closed set but not in Čech $\pi g\beta$ closed set.

Theorem 3.16:

- a. Every Čech M-closed set is Čech MP-closed set.
- b. Every Čech N-closed set is Čech MP-closed set.
- c. Every Čech T-closed set is Čech MP-closed set.
- d. Every Čech D-closed set is Čech MP-closed set.

Proof: (a) Let G be a \check{C} ech π -open subset of (X,k) such that A \subseteq G. Since A is closed k(A)=A \subseteq G. Let A be Čech M-closed set that implies $k_{\beta}(A) \subseteq G$ whenever $A \subseteq G, G$ is open. But we have $k_{\beta}(A) \subseteq k(A) = A \subseteq G$ that implies

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

set is Čech MP-closed set.

Proof is obvious for others.

Remark 3.17: Converse of the above theorem need not be true which can be seen from the following example.

Example 3.18: Let X={a, b, c, d} and define the closure on X by $k\{\phi\} = \{\phi\}, k\{a\} = k\{a, b\} = \{a, b\}, k\{b\} = \{a, b\}, k\{b\}, k\{b\}, k\{b\} = \{a, b\}, k\{b\}, k\}, k\{b\}, k\{b\}, k\}, k\{b\}, k\{b\}, k$ $k\{b, c\}=k\{a, b, c\}=\{a, b, c\}, k\{c\}=k\{a, c\}=$ $\{a, c\}, k\{d\}=k\{a, d\}=k\{a, b, d\}=\{a, b, d\}, k\{b, d\}=$ $k{c, d}=k{b, c, d}=k{a, c, d}=k X=X$

 $\{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\},$ $\{b, c, d\}\}$

Čech MP-closed set of $X = \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{c\}, \{d\}, \{a, b\}, \{a, b$ $\{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\},$ $\{a, b, d\}, \{b, c, d\}\}$

Then $A=\{c, d\}$ is Čech MP-closed set but not in Čech M- **Theorem 3.23:** Let (X,k) be a closure space. If A and B closed set.

Example 3.19: Let X={a, b, c, d} and define the closure on X by $k\{\phi\} = \{\phi\}, k\{a\} = k\{a,b\} = \{a,b\}, k\{b\} = k\{b,c\} = k$ $\{a,b,c\}=\{a,b,c\},k\{c\}=k\{a,c\}=\{a,c\},k\{d\}=k\{a, d\}=k\{a, b, c\}$ $d = \{a, b, d\}, k\{b, d\} = k\{c, d\} = k\{b, c, d\} = k\{a, c, d\} = k$ X=X

 \check{C} ech N –closed set of X={ ϕ , X,{a},{b},{c},{d},{a, b},{a, c, {b, c}, {b, d}, {a, b, c}, {a, b, d} {b, c, d}

Čech MP-closed set of $X = \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, Remark 3.24$: The intersection of Čech MP-closed sets $\{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\},$ $\{a, b, d\}, \{b, c, d\}\}$

Then $A=\{a, c, d\}$ is Čech MP-closed set but not in Čech N-closed set.

Example 3.20: Let X={a, b, c, d} and define the closure on X by $k\{\phi\} = \{\phi\}, k\{a\} = k\{a, b\} = \{a, b\}, k\{b\} =$ $k\{b, c\}=k\{a, b, c\}=\{a, b, c\}, k\{c\}=k\{a, c\}=\{a, c\}, k\{d\}=$ $k\{a, d\}=k\{a, b, d\}=\{a, b, d\}, k\{b, d\}=k\{c, d\}=$ $k{b, c, d}=k{a, c, d}=k X=X$

 $\{a, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}$

Čech MP-closed set of $X = \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, b\},$ $\{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{a$ $\{a, b, d\}, \{b, c, d\}\}$

closed set.

Example 3.21: Let X={a, b, c, d} and define the closure operator on X by $k\{\phi\}=\phi$, $k\{a\}=k\{d\}=k\{a, b\}=$ $k{a, d}=k{a, b, d}={a, b, d}, k{b}={b}, k{c}=k{b, d}=$ $k{c, d}=k{b, c, d}={b, c, d}, k{a, c}=k{a, c, d}={a, c, d},$ $k\{b, c\} = k\{a, b, c\} = k X = X$

 \check{C} ech D-closed of X={ ϕ , X,{b},{d},{a, b},{a, c},{a, d}, A=\phi. Hence A is \check{C} ech MP-closed. $\{b, c\}, \{b, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}, \{b, c, d\}\}$

Čech MP-closed set of $X=\{\phi, X, \{b\}, \{d\}, \{a, b\}, \{a, c\}, Proposition 3.27: Let (X,k) be a čech closure space. If A$ $\{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}, \text{ is čech MP- closed and F is čech π- closed in (X,k) then}$ $\{b, c, d\}\}$

 $k_{\beta}(A) \subseteq G$, where G is π -open. Hence Ever Čech M-closed Then A={c, d} is Čech MP-closed set but not in Čech Dclosed set.

> Remark 3.22: From the above results we have the following implications.

are \check{C} ech MP-closed subsets of (X,k) then AUB is \check{C} ech MP-closed set.

Proof: Let G be a π -open subset of (X,k) such that $A \cup B \subseteq G$, then $A \subseteq G, B \subseteq G$. Since A and B are Čech MPclosed sets, $k_{\beta}(A) \subseteq G$ and $k_{\beta}(B) \subseteq G$ that implies $k_{\beta}(A) \bigcup k_{\beta}(B) \subseteq G$. But $k_{\beta}(A \cup B) = k_{\beta}(A) \cup k_{\beta}(B) \subseteq G$.

Therefore $(A \cup B)$ is Čech MP-closed set.

need not be Čech MP-closed set.

Theorem 3.25: If A is a Čech MP-closed set, then $k_{\beta}(A)$ -A contains no non empty \check{C} ech π -closed set.

Proof: Let A be Čech MP-closed set. Let F be a non empty Čech π -closed set $\subseteq k_{\beta}(A)$ -A. That implies $F \subseteq k_{\beta}(A) \cap A^{c}$. (i.e.,) $F \subseteq k_{\beta}(A)$ and $F \subseteq A^{c}$. $F \subseteq A^{c} \Rightarrow A \subseteq F^{c}$. Since F is Čech π -closed, F^c is Čech π -open. Thus we have $k_{\beta}(A) \subseteq F^{c}$. Consequently $F \subseteq [k_{\beta}(A)]^{c}$. Hence we get $F \subseteq k_{\beta}(A) \cap [k_{\beta}(A)]^{c} = \phi$. Hence $k_{\beta}(A)$ -A contains no non empty \check{C} ech π -closed set.

Corollary 3.26: Let A be a Čech MP-closed set. Then A is Then A={d} is Čech MP-closed set but not in Čech T-Čech β -closed if and only if $K_{\beta}(A)$ -A is Čech MP-closed set.

> **Proof:** Suppose that A is Čech MP-closed set and Čech β closed set. Since $A = k_{\beta}$ (A) we have $k_{\beta}(A)-A=\phi$, which is Čech π -closed. Conversely, Suppose that A is Čech MPclosed set and $k_{\beta}(A)$ -A contains no non empty Čech π closed set. Then $k_{\beta}(A)$ -A is itself Čech π -closed $\Rightarrow k_{\beta}(A)$ -

> $A \cap F$ is čech MP- closed.

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

Proof: Let G be a čech π -open subset of (X,k) such that **Proof**: Let F be a π -closed subset of (X,k) such that $A \cap F \subseteq G$, Then $A \subseteq G \cup (X-F)$ and so, since A is čech MP- $F \subseteq A \cap B$. Then $X \cdot (A \cap B) \subseteq X-F$ This implies that closed, $k_{\beta}(A) \subseteq G \cup (X,F)$, Then $k_{\beta}(A) \cap F \subseteq G$, since F is $(X-A) \cup (X-B) \subseteq X-F$. $(X-A) \cup (X-B)$ is $\check{\mathcal{C}}$ ech MP-closed set. čech π-closed, $k_{\beta}(A \cap F) \subseteq G$. Therefore A∩F is čech MP- (By proposition 3.23) Thus $k_{\beta}[(X-A) \cup (X-B)] \subseteq X-F$ closed.

Proposition 3.28: Let (Y,l) be a closed subspace of (X,k). If F is a čech MP-closed subset of (Y,l),then F is a čech MP-closed subset of (X,k).

Proof: Let G be čech π -open set of (X,k) such that F \subseteq G. Since F is čech MP-closed and $G \cap Y$ is čech π open $k_{\beta}(F) \cap Y \subseteq G$, But Y is closed subset of (X,k) and $k_{\beta}(F)\subseteq G$, where G is a čech π -open set. Therefore F is a čech MP-closed set of (X,k).

Proposition3.29: Let (X,k) be a čech closure space and let k be idempotent. If A is a čech MP-closed subset of (X,k) such that $A \subseteq B \subseteq k_{\beta}(A)$, then B is a čech MP-closed subset of (X,k)

Proof: Let G be a čech π -open subset of (X,k) such that B \subseteq G. Then A \subseteq G, since A is čech MP-closed, $k_{\beta}(A)\subseteq$ G. As k is idempotent, $k_{\beta}(B) \subseteq k_{\beta}(k_{\beta}(A)) = k_{\beta}(A) \subseteq G$, Hence B is čech MP-closed.

Proposition 3.30: Let (X,k) be a *č*ech closure space and $A \subseteq X$, then the following are true:

- a. If A is čech closed then A is čech MP-closed.
- b. If A is čech g-closed then A is čech MP-closed.
- c. If A is $\check{c}ech \beta$ -closed then A is $\check{c}ech MP$ -closed.
- d. If A is \check{c} ech π -closed then A is \check{c} ech MP-closed.
- e. If A is čech π -open and čech MP-closed then A is čech β-closed.

Proof: Given A is čech closed implies k(A)=A. But if A \subseteq G and G is π -open. Then $k_{\beta}(A) \subseteq k(A) = A \subseteq G$ which implies A is čech MP-closed. Thus if A is čech closed then A is čech MP-closed.

The Proof of the remaining statements are obvious.

IV. ČECH MP-OPEN SETS

Definition 4.1: A subset A in Čech closure space (X,k) is called Čech MP-open set if its complement is Čech MPclosed set.

Theorem 4.2: A subset A in Čech closure space (X,k) is called \mathcal{L} ech MP-open set if and only if $F \subseteq X \cdot k_{\beta}(X \cdot A)$ whenever F is π -closed and F \subseteq A.

Proof: Suppose that A is $\check{\mathcal{C}}$ ech MP-open and F be a π closed subset of (X,k) such that A \subseteq F then X-A \subseteq X-F. But X-A is \mathcal{L} ech MP-closed set and X-F is π -open. That implies $k_{\beta}(X-A) \subseteq X-F$ (i.e.,) $F \subseteq X-k_{\beta}(X-A)$ Conversely, Let F be a π -closed set, F \subseteq A and F \subseteq X- k_{β} (X-A) that implies $k_{\beta}(X-A) \subseteq X-F, X-F$ is π -open that implies X-A is $\check{\mathcal{C}}$ ech MP-closed set and so A is $\check{\mathcal{C}}$ ech MP-open.

Theorem 4.3: If A and B are $\check{\mathcal{C}}$ ech MP-open subsets of (X,k) then A \cap B is \mathcal{L} ech MP-open set.

Hence $k_{\beta}[X-(A\cap B)] \subseteq X$ -F that implies $F \subseteq X - k_{\beta}[X-K]$ $(A \cap B)$] that implies $A \cap B$ is Čech MP-open (by Theorem 4.2).

Theorem 4.4: Let (X, g) be a closure space and let (Y ,h) be a closed subspace of (X, g). If G is $\tilde{\mathcal{L}}$ ech MP-open subset of (X, g) then $G \cap Y$ is $\tilde{\mathcal{L}}$ ech MP-open subset of (Y,h).

Proof: Let G be a $\check{\mathcal{C}}$ ech MP-open subset of (X,g). then X-G is a $\check{\mathcal{C}}$ ech MP-closed subset of (X, g). Since Y is a closed subset of $(X, g), (X-G) \cap Y$ is a $\check{\mathcal{L}}$ ech MP-closed set of (X, g). But $(X-G)\cap Y=Y-(G\cap Y)$. Therefore $Y-(G\cap Y)$ is a $\check{\mathcal{L}}$ ech MP-closed subset of (X, g). Hence G \cap Y is a $\check{\mathcal{L}}$ ech MP-open subset of (X, g).

REFERENCES

- [1] D. Andrijevic, "On β-open sets", Mat vesnik 48(1996), 59-64.
- I.Arockiarani and J.Martina jency. "On J-Zech closed sets in [2] closure spaces, Kerala Mathematical Association.
- [3] C.Boonpok, "Between closed sets and generalized closed in closure spaces, Acta Math Univ, Ostra 16(2008) 3-14.
- [4] C.Boonpok, "Generalized closed sets in Čech closed spaces" Acta Universitatis Apulensis.
- E.cech, "Topological Spaces", Inter science publications John [5] wiley and son, New York (1996).
- K. Chandrasekhara Rao and R.Gowri "On closure Spaces", [6] Varahamihir journal of Mathematical Science 5(2) (2005), 375-378.
- R.Devi and M.Parimala "On ay-closed Sets in Bi-Čech Closure [7] Spaces" Int. Journal of Math. Analysis, Vol. 4, 2010, no. 33, 1599-1606.
- A.Francina Shalini and I.Arockiarani," Čech πgβ-closed sets in [8] closure spaces, Journal of Global Research in Mathematical Archives, Volume1, No: 4, April 2013.
- C.Janaki and I. Arockiarani "A new class of open functions in Čech [9] spaces", Actaciencia India, 36M, 4(2010), 649-653.
- [10] N.Levine," Generalized closed sets in topology, Rend, circ, Mat palemo, 19(1970), 89-96.
- [11] D. Sasikala and I.Arockiarani "Čech w-closed sets in closure spaces", International Journal of Mathematical Archive-4(10), 013, 30-35.