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Abstract: In this Paper using mg"b*-closed set in topological spaces we introduce a new class of sets called =
generalized " b*-continuous functions (briefly ng”"b*-continuous functions). Further the concept of almost mg”b*-
continuous function and ng”b*-irresolute function are discussed.
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1. INTRODUCTION

Levine[10] and Andrijevic[2] introduced the concept of
generalized open sets and b-open sets respectively in
topological spaces. The class of b-open sets is contained in
the class of semipre-open sets and contains the class of
semi-open and the class of pre-open sets. Since then
several researches were done and the notion of generalized
semi-closed, generalized pre-closed and generalized
semipre-open sets were investigated. In 1968 Zaitsev[18]
defined n-closed sets.

Later Dontchev and Noiri[6] introduced the notion of ng-
closed sets. Park defined mgp-closed sets. Then Aslim,
Caksu and Noir[3] introduced the notion of mgs-closed
sets. D. Sreeja and S. Janaki[17] studied The idea of ngb-
closed sets and introduced the concept of mgb-continuity.
Later the properties and characteristics of mgb-closed and
ngb-continuity  were introduced by Sinem Caglar and
Gulhan Ashim[16]. Dhanya. R and A. Parvathi[4]
introduced the concept of mgb*-closed sets and mgb*-
continuity in topological spaces. Hussain[7] introduced the
concept of almost continuity in topological spaces.

Il. PRELIMINARIES

Throughout this paper (X,r) represents non empty
topological spaces on which no separation axioms are
assumed unless otherwise mentioned. A subset A of a
topological space (X,t), cl(A) and int(A) denote the
closure of A and interior of A respectively. (X,t) will be
replaced by X if there is no chance of confusion.

Definiton 2.1
Let (X,t) be a topological space. A subset A of (X,1) is
called

(1) a semi-closed set if int(cl(A))<SA.

(2 a a-closed set if cl(int(cl(A)))<SA.

(3) a pre-closed set if cl(int(A))<SA.

4) a semipre-closed set if int(cl(int(A)))<SA.
(5) a regular-closed set if A=cl(int(A)).

(6) a b-closed set if cl(int(A))Nint(cl(A))SA.

(7) a b*-closed set if int(cl(A))cU, whenever AcU
and U is b-open.
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the complements of the above mentioned sets are called
semi-open, a-0pen, pre-open, semi-open, regular open, b-
open, b*-open sets respectively. The intersection of all
semi-closed (resp. a-closed, pre-closed, semipre-closed,
regular-closed and b-closed) subsets of (X,t) containing A
is called the semi-closure (resp. a-closure, pre-closure,
semipre-closure, regular-closure and b-closure) of A and is
denoted by scl(A) (resp. acl(A), pcl(A), spcl(A), rcl(A)
and bcl(A)). A subset A of (X,1) is called clopen if it is
both open and closed in (X,7).

Definition 2.2
A subset A of a space (X,1) is called n-closed if A is finite
intersection of regular closed sets.

Definition 2.3

A subset A of a space (X,7) is called

(1) a g-closed set if cl(A)cU whenever AcU and U is
open in (X,1).

(2) a gp-closed set if pcl(A)cU whenever AcU and U is
open in (X,1).

(3) a gs-closed set if scl(A)cU whenever AcU and U is
open in (X,1).

(4) a gb-closed set if bcl(A)cU whenever AcU and U is
open in (X,1).

(5) a ga-closed set if acl(A)cU whenever AcU and U is
open in (X,1).

(6) a mg-closed set if cl(A)cU whenever AcU and U is =n-
open in (X,1).

(7) a mga-closed set if acl(A)cU whenever AcU and U is
w-open in (X,1).

(8) a mgp-closed set if pcl(A)cU whenever AcU and U is
w-open in (X,1).

(9) a mgs-closed set if scl(A)cU whenever AcU and U is
n-open in (X, 7).

(10) a mgb-closed set if bcl(A)cU whenever AcU and U
is m-open in (X,T).

Complement of n-closed set is called n-open set.

Complement of g-closed, gp-closed, gs-closed, gb-closed,
ga-closed, mga-closed, mgp-closed, mgs-closed and mgb-
closed sets are called g-open, gp-open, gs-open, gh-open,
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go-open, mga-open, Tgp-open, tgs-open and mtgb-open sets
respectively.

Definition 2.4

A function f: (X,1)—(Y,0) is called continuous(resp.a-
continuous,  pre-continuous,  g-continuous,  regular
continuous, gb- continuous, b*- continuous) if f(V) is
closed (resp. o- closed, pre- closed, g- closed, regular
closed, gb- closed, b*- closed) in (X,t) for every closed set
Vin (Y,0).

Definition 2.5

A function f: (X,t)—(Y,0) is called n-continuous(resp. ma.-
continuous,  mgp-continuous,  7wg-continuous,  wgb-
continuous, ngb*- continuous) if (V) is closed (resp. ma-
closed, mgp- closed, ng- closed, ngb- closed, ngb*- closed)
in (X,7) for every closed set V in (Y,0).

IIL ng”b*-CONTINUITY

Definition 3.1

A function f: (X,1) —(Y,0) is called ng”b*-continuous
if £7(V) isng*b*-closed in (X,7) for every closed set V
of (Y,0).

Definition 3.2

A function f : (X,1) —(Y,0) is called ng”b*-irresolute if f -
Y(V) is mg”b*-closed in (X,t) for every ng"b*-closed set
Vin (Y,0)

Definition 3.3
A function T: (X,1) —(Y,0) is called ng"b*-closed if f(V)
is mg”b*-closed in (Y,o) for every ng”b*-closed set V in

(X,1).

Example 3.1(a)

Consider X={a,b,c,d},
={X,D,{a},{b},{a,b},{b,c},{a,b,c},{a,b,d}} and

Y={ab,c,d} with topology o={Y,D,{a},{a,b}}. Let
f:(X,1)—(Y,0) be defined by f(a)=a; f(b)=b; f(c)=c, then
is mg”b*-continuous.

Example 3.2(a)

Consider X={a,b,c}, ={X®,{a},{b},{a,b}} and
Y={a,b,c} with  topology  o={Y,®,{a}}. Let
f:(X,1)—(Y,0) be defined by f(a)=a; f(b)=b; f(c)=c, then f
is mg” b*-irresolute.

Theorem 3.1

Every continuous function is g b*-continuous.

Proof

Let f: (X,7) —(Y,0) be a continuous function. Let V be a
closed set in Y. Since f is continuous f (V) is closed in X.
As every closed set is ngb*-closed. f ™ is mg"b*-closed.
Hence fis mg"b*-continuous.

Remark 3.1

The converse of the above theorem need not be true as
seen from the following example.

Example 3.1
Consider X={a,b,c}, 1={X,D,{a},{b},{a,b}} and
Y={a,b,c} with topology o={Y,®,{b,c}}. Let
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f:(X,1)—(Y,0) be defined by f(a)=a; f(b)=b; f(c)=c, then
is mg”b*-continuous but it is not continuous.

Theorem 3.2

Every n-continuous function is ng”b*-continuous.

Proof

Let f: (X,t) —(Y,0) be a n-continuous function. Let V be a
closed set in Y. Since f is n-continuous f (V) is n-closed
in X. As every o-closed set is mg"b*-closed. f ™ is ng"b*
-closed. Hence f'is mg”b*-continuous.

Remark 3.2

The converse of the above theorem need not be true as
seen from the following example.

Example 3.2
Consider X={a,b,c},
={X,®,{a},{b},{a,b},{b,c},{a,b,c},{a,bd}} and

Y={a,b,c,d} with topology o={Y,®,{b},{b,c}}. Let
f:(X,71)—(Y,0) be defined by f(a)=a; f(b)=b; f(c)=c,f(d)=d
then fis =g b*-continuous but it is not -continuous.
Theorem 3.3

Every a-continuous function is mg”b*-continuous.

Proof

Let f: (X,1) —(Y,0) be a a-continuous function. Let V be a
closed set in Y. Since f is a-continuous f *(V) is a-closed
in X. As every a-closed set is ng”"b*-closed. f ™ is ng"b*
-closed. Hence fis mg”b*-continuous.

Remark 3.3

The converse of the above theorem need not be true as
seen from the following example.

Example 3.3

Consider X={a,b,c}, 1={X,®,{a},{b},{a,b}} and
Y={a,b,c} with topology o={Y,®D,{a},{c},{a,c}}. Let
f:(X,1)—(Y,0) be defined by f(a)=a; f(b)=b; f(c)=c, then f
is mg"b*-continuous but it is not a-continuous.

Theorem 3.4

Every g-continuous function is ©g”b*-continuous.

Proof

Let f: (X,t) —(Y,0) be a g-continuous function. Let V be a
closed set in Y. Since f is g-continuous (V) is g-closed
in X. As every g-closed set is mg"b*-closed. (V) is
ng"b*-closed. Hence f is mg”b*-continuous.

Remark 3.4

The converse of the above theorem need not be true as
seen from the following example.

Example 3.4

Consider X={ab,c}, ={X,®,{a},{b},{a,b}} and
Y={ab,c} with topology o={Y,®,{a},{b,c}}. Let

f:(X,t)—(Y,0) be defined by f(a)=a; f(b)=b; f(c)=c. Then f
is mg”b*-continuous but it is not g-continuous.

Theorem 3.5

Every pre continuous function is =g”b*-continuous.

Proof

Let f: (X,1) —(Y,0) be a pre continuous function. Let V be
a closed set in Y. Since f is pre continuous f V) is
pre-closed in X. As every pre-closed set is mg”b*-closed.
(V) is ng"b*-closed. Hence f is mg”b*-continuous.
Remark 3.5

The converse of the above theorem need not be true as
seen from the following example.
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Example 3.5

Consider X={a,b,c,d},
={X,D,{a},{d},{a,d},{c,d},{a,c,d}} and Y={ab,c,d}
with  topology o={Y,®,{a},{b},{a,b},{b,c}}. Let
f:(X,1)—(Y,0) be defined by f(a)=b; f(b)=c; f(c)=a; f(d)=d.
Then f is tg"b*-continuous but it is not pre-continuous.
Theorem 3.6

Every gb-continuous function is wg”b*-continuous.

Proof

Let f: (X,1) —(Y,0) be a gb-continuous function. Let V be
a closed set in Y. Since f is gb-continuous f (V) is gb-
closed in X. As every gb-closed set is mg”b*-closed. f -
Y(V) is mg"b*-closed. Hence f is mg"b*-continuous.
Remark 3.6

The converse of the above theorem need not be true as
seen from the following example.

Example 3.6

Consider X={a,b,c,d}, ={X,®,{b},{c,d},{b,c,d}} and
Y={ab,c,d} with topology o={Y,D,{a,c,d}}. Let
f:(X,1)—(Y,0) be defined by f(a)=a; f(b)=b; f(c)=c; f(d)=d.
Then fis mg"b*-continuous but it is not gb-continuous.

Theorem 3.7

Every nga-continuous function is wg”b*-continuous.
Proof

Let f: (X,t) —(Y,0) be a mga-continuous function. Let V
be a closed set in Y. Since f is mga-continuous f (V)
is mga-closed in X. As every mga-closed set is mg"b*-
closed. f (V) is ng"b*-closed. Hence f is mg"b*-
continuous.

Remark 3.7

The converse of the above theorem need not be true as
seen from the following example.

Example 3.7
Consider X={a,b,c}, ={X,®,{a},{b},{a,b},{a,c}} and
Y={a,b,c} with  topology  o={Y,®,{a}}. Let

f:(X,1)—(Y,0) be defined by f(a)=b; f(b)=c; f(c)=c. Then f
is mg"b*-continuous but it is not xga-continuous.

Theorem 3.8

Every ng”b*-continuous function is mgb-continuous.
Proof

Let f: (X,1) —(Y,0) be a ng”"b*-continuous function. Let
V be a closed set in Y. Since f is mg"b*-continuous f *(V)
is mgb-closed in X. As every mg”b*-closed set is mgb-
closed. (V) is ngb-closed. Hence f is mgb-continuous.
Remark 3.8

The converse of the above theorem need not be true as

seen from the following example.

Example 3.8

Consider X={a,b,c}, ={X,D,{a},{b},{a,b},{a,c}} and
Y={a,b,c} with  topology  o={Y,D,{a}}. Let

f:(X,1)—(Y,0) be defined by f(a)=b; f(b)=b; f(c)=c. Then f
is mgb-continuous but it is not £g”b*-continuous.
Theorem 3.9

Every ng”b*-continuous function is wgs-continuous.

Proof

Let f: (X,1) —(Y,0) be a ng”b*-continuous function. Let
V be a closed set in Y. Since f is ng”b*-continuous f (V)
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is mgs-closed in X. As every ng”b*-closed set is mgb-
closed. f (V) is mgs-closed. Hence f is mgs-continuous.
Remark 3.9

The converse of the above theorem need not be true as
seen from the following example.

Example 3.9

Consider X={ab,c}, ={X,®,{a},{b},{a,b},{a,c}} and
Y={ab,c} with topology o={Y,®,{a}}. Let
f:(X,1)—(Y,0) be defined by f(a)=b; f(b)=c; f(c)=a. Then f
is mgs-continuous but it is not =g b*-continuous.

Remark 3.10
ngp-continuous and wg”b*-continuous are independent of
each other. It is shown in the following example.

Example 3.10
Let X={abc}, ={X®{a},{b},{ab} {ac}} and
Y={ab,c} with topology o={Y,D,{b},{b,c}}. Let

f:(X,1)—(Y,0) be defined by f(a)=a; f(b)=c; f(c)=b. Then f
“{a}={a}mg"b*-continuous but it is not mgp-continuous
and f *{a,c}={a,b} is mgp-continuous but it is not ©g"b*-
continuous.

Remark 3.11

ng-continuous and mg”b*-continuous are independent of
each other. It is shown in the following example.

Example 3.11

Let X={a,b,c,d},
={X,D,{a},{b},{a,b},{b,c},{a,b,c},{ab,d}} and
Y={a,b,c,d} with topology
o={Y,D,{a},{c},{a,b}.{ac}.{ab,c}}. Let f:
(X,1)—(Y,0) be an identity function. Then f-

Lfa,b,d}={a,b,d} is mg-continuous but it is not mg"b*-
continuous and f *{a}={a,b} is mg"b*-continuous but it is
not tg-continuous.

IV. ng"b*-CONTINUITY AND ITS
CHARACTERISTICS

Theorem 4.1
Let f: X — Y be a function. Then the following statements
are equivalent:

(1) fis mg™b*-continuous;

2 The inverse image of every open set in Y is
ng"b*-open in X.

Proof

(1) =(2)

Let U be open subset of X. Then (Y-U) is closed in Y.
Since f is ng"b*-continuous, f *(Y-U)=X-f *(U) is ng"b*-
closed in X. Hence f*(U) is ng”b*-open in X.

) =(1)

Let V be a closed subset of Y. Then (Y-V) is openin Y,
hence by hypothesis (2) f *(Y-U)=X-f (V) is ng"b*-open
in X. Hence f (V) is ng”b*-closed in X. Therefore, f is
ng”b*-continuous.

Theorem 4.2

Every ng"b*-irresolute function is g”b*-continuous.
Proof

Let f: X—Y be ng"b*-irrseolute function. Let V be closed
set in Y, then V is ng"b*-closed in Y. since f is ng"b*-

220



IARISET

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

() International Advanced Research Journal in Science, Engineering and Technology
ISO 3297:2007 Certified
Vol. 3, Issue 8, August 2016

irresolute f (V) is mg"b*-closed in X. Hence f is ng"b*-
continuous.

Remark 4.2

The converse of the above theorem need not be true it can
be seen from the following example.

Example 4.2

Consider X=Y={a,b,c}, ={X,D,{a},{b},{a,b}},
o={X,®,{a}}. Let f: (X,1) — (Y,0) be the identity map.
Then fis mg"b*-continuous but it is not ©g”"b*-irresolute.

Remark 4.3

Composition of two mg”b*-continuous is need not be
ng”b*-continuous.

Example 4.3

Let X={a,b,c,d}, ={X,D,{a},{b},{a,b},{a,b,c}},
o={Y,®{a},{c}.{ac}}, n={Z,®,{a},{b}.{ab}{ab,d}}.
Define f: (X,1)—(X,0) by f(a)=a; f(b)=d; f(c)=b; f(d)=c.
Define g: (X,0)—(X,n) by g(a)=a; g(b)=c; g(c)=b; g(d)=d.
Then f and g are ng”b*-continuous but gef is not ng"b*-
continuous.

Theorem 4.4

Let f: X—Y be a function. Then the following statements
are equivalent:

Q) For each x € X and each open set V containing
f(x) there exists a mg”b*-open set U containing x sch that
f(U) c V.

2 fng"b*-cl(A)) c cl(f(A)) for every subset A of
X.

Proof

1) =(2)

Let y € f(ng"b*-cl(A)) then, there exists an x € ng"b*-
cl(A) such that y=f(x). we claim that y € cl(f(A)) and let V
be any open neighborhood of y. Since x € ng"b*-cl(A)
there exists an ng”b*-open set U such that x € U and
UNA #®, fU) c V. Since UNA#®D, f(A)NV+D.
Therefore, y=f(x) € cl f(A). Hence f(ng"b* cl(A)). Hence
fng”b*cl(A)) c cl f(A).

) =(1)

Let x X and V be any open set containing f(x). Let A=f "
Y(Y-U), since flng"b*-cl(A)) < cl(f(A) c(Y-V) =
ng"b*cl(A) c f (Y-V)=A. Hence ng"b*-cl(A)=A. Since
f(x) € V =2x € f (V) = x ¢ ng"b*-cl(A). Thus there
exists an open set U containing x such that UNA=®
f(U)N{(A)=®. Therefore f(U)c V.

Definition 4.1

A topological space (X,1) is ng”b*-space if every mg"b*-
closed set is closed.

Theorem 4.5

Every ng"b*-space is ng"b*-T,/, space.

Proof

Let (X,1) be a ng"b*-space and let AcX be ng"b*-closed
set in X. Then A is closed= A is b*-closed= (X,1) is a
ng"b*-Ty, space.

Theorem 4.6

Let f: (X,1)—(Y,0) be a function then,

(1) If fis wg"b*-irresolute and X is mg"b*- Typp
space, then f is b*-irresolute.
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2) If fis ng"b*-continuous and X is ng”b*- Ty,
space, then f is b*-continuous.

Proof

(1) Let V be b*-closed in Y, then V is ng"b*-closed

in Y. Since f is ng”b*-irresolute, f (V) is ng"b*-
closed in X. Since X is mg"b*-Ty, space, f (V) is b*-
closed. Therefore f is b*-continuous.

2) Let V be closed in Y. Since f is ng”b*-
continuous, f (V) is mg*b*-closed in X. Since X is
ng"b*- Ty, space, f (V) is b*-closed. Therefore f is b*-
continuous.

Definition 4.2

A function f: X—Y is said to be almost ©g”b*-continuous
if f (V) is mg"b*-closed in X for every regular closed set
VofY.

Theorem 4.7

For a function f: X—Y, the following statements are
equivalent:

(1) fis almost mg”"b*-continuous.

2 f (V) is ng"b*-open in X for every regular open
setVofY.

(3) f (int(cl(V))) is mg"b*-open in X for every open
setVofY.

(4) f "(cl(int(V))) is mg"b*-closed in X for every

closed set V of Y.

Proof

(1)=(2)

Suppose f is almost ng”b*-continuous. Let V be a regular
open subset of Y. Since (Y-V) is regular closed and f is
almost ng”b*-continuous, f *(Y-V) = X-f (V) is ng"b*-
closed in X. Hence f*(V) is mg”b*-open in X.

(2)=(1)

Let V be a regular closed subset of Y. Then (Y-V) is
regular open. By the hypothesis, fX(Y-V)=X-f (V) is
ng™b*-open in X. Hence f1(V) is ng"b*-closed. Thus f is
ng"b*-continuous.

(2)=(3)

Let V be an open subset of Y. Then int(cl(V)) is regular
open in Y. By the hypothesis, f(int(cl(V))) is ng"b*-open
in X.

(3)=(2)

Let V be a regular open subset of Y. Since V=int(cl(V))
and every regular open set is open then f'l(V) is mgb*-
open in X.

=>4

Let V be a closed subset of Y. Then (Y-V) is open in Y.
By the hypothesis, f “(int(cl(Y-V))) = f (Y-cl(int(V))) =
X-f 'l(cl(int(V))) is mg"b*-open in X. Therefore f
Y(cl(int(V))) is mg"b*-closed in X.

(4)=(3)

Let V be a open subset of Y. Then (Y-V) is closed. By the
hypothesis f (Y-cl(int(Y-V))) = X-f (int(cl(V))) is
ng™b*-closed in X. Therefore, f *(int(cl(V))) is ng"b*-
open in X.

Theorem 4.8
Every mgb*-continuous function is almost mg”b*-
continuous.
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Proof

Let £ X—Y be mg"b*-continuous fnction. Let V be
regular closed set in Y, then V is closed in Y. Since f is
ng™b*-continuous function f (V) is ng"b*-clo3sed in X.
Therefore fis almost mg”b*-continuous.

Theorem 4.9

Every almost b*-continuous function is almost mg"b*-
continuous.

Proof

Let f: X—Y be almost b*-continuous function and let V
be regular closed set in Y. Then f (V) b*-closed in X,
hence f*(V) is ng"b*-closed in X. Therefore f is almost
ng”b*-continuous.

Theorem 4.10

Let X be a mg"b*-Ty, space. Then f X—Y is almost
ng”b*-continuous if and only if f is almost b*-continuous.
Proof

Suppose f: X—Y is almost ng”b*-continuous. Let A be a
regular closed subset of Y. Then f (A) is ng”b*-closed in
X. Since X is ng"b*-Ty,, space, f'(A) is b*-closed in X.
Hence f'is almost mg”"b*-continuous.

Conversely, suppose that f: X—Y is almost b*-continuous
and A be a regular closed subset of Y. Then f "(A) is b*-
closed in X. Since every b*-closed set is mg"b*-closed, f -
Y(A) is mg’b*-closed. Therefore, f is almost mg”b*-

continuous.
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